Cyclobutadiène

Un article de Wikipédia, l'encyclopédie libre.
(Redirigé depuis 1120-53-2)

cyclobutadiène
formule développée du cyclobutadiène modèle boules du cyclobutadiène
formule développée et modèle boules du cyclobutadiène
Identification
Nom UICPA cyclobuta-1,3-diène
Synonymes

cyclobutadiène, 1,3-cyclobutadiène

No CAS 1120-53-2
PubChem 136879
ChEBI 33657
SMILES
InChI
Propriétés chimiques
Formule C4H4  [Isomères]
Masse molaire[1] 52,074 6 ± 0,003 5 g/mol
C 92,26 %, H 7,74 %,
Précautions
Directive 67/548/EEC
Facilement inflammable
F

Unités du SI et CNTP, sauf indication contraire.

Le cyclobutadiène est le plus petit des annulènes ([4]annulène) et est un hydrocarbure cyclique extrêmement instable qui, à l'état libre et à pression et température ambiante, a une demi-vie plus courte que cinq secondes. Il a pour formule brute C4H4 et une structure rectangulaire vérifiée par spectroscopie infrarouge. C'est contraire à la structure carrée prédite par la méthode de Hückel non étendue. En fait, il a une alternance de liaisons simples et de doubles liaisons et ne suit pas la règle de Hückel, car il a 4 électrons π et 4 n'est pas le double d'un nombre impair, i.e. 4 ≠ 4n+2, il est dit pour cela anti-aromatique. Certains composés métal-cyclobutadiène sont stables parce que l'atome métallique apporte deux électrons de plus au système.

L'énergie des électrons π du cyclobutadiène est plus haute que celle de son équivalent à chaîne ouverte, le butadiène-1,3. Il se dimérise par une réaction de Diels-Alder à 35 K (−238 °C). La forme monomérique a été étudiée à plus haute température en la piégeant dans une matrice isolante, un gaz noble en l'occurrence.

Synthèse[modifier | modifier le code]

Après de nombreux essais infructueux, le cyclobutadiène fut synthétisé pour la première fois par Rowland Pettit de l'University of Texas en 1965[2], cependant il ne put l'isoler. Le cyclobutadiène peut être produit par dissociation de composés métal-cyclobutadiène stables, par exemple, en traitant (C4H4)Fe(CO)3 avec le nitrate de cérium (IV) ammonium. Ce complexe fer-cyclobutadiène- tricarbonyl est préparé à partir du Fe4(CO)9 et le cis-3,4-dichloro-cyclobutène dans une réaction de double deshydrohalogénation[2],[3].

Le cyclobutadiène qui est libéré du complexe du fer, réagit avec un alcyne déficitaire en électrons pour former le benzène Dewar[4] :

Conversion du cyclobutadiène en benzène Dewar

Le benzène Dewar se convertit en phtalate de diméthyle par chauffage à 90 °C.

un autre dérivé du cyclobutadiène est aussi accessible par une cycloaddition 2+2 d'un dialcyne. Dans la réaction particulière représentée ci-dessous, le produit piégé est un dérivé de la 2,3,4,5-tétraphènylcyclopenta-2,4-diènone et ce produit peut par perte d'un monoxyde de carbone former un cyclooctatétraène[5] :

Cycloaddition [2 + 2]Acétylène-Acétylène

Notes et références[modifier | modifier le code]

  1. Masse molaire calculée d’après « Atomic weights of the elements 2007 », sur www.chem.qmul.ac.uk.
  2. a et b Cyclobutadiene- and Benzocyclobutadiene-Iron Tricarbonyl Complexes, G. F. Emerson, L. Watts, R. Pettit; J. Am. Chem. Soc.; 1965; 87(1);p. 131-133. première page
  3. Iron, tricarbonyl (η4-1,3-cyclobutadiene)-, R. Pettit and J. Henery; Organic Syntheses; 1988; Coll. Vol. 6, p. 310 & 1970; Vol. 50, p. 21 Lien
  4. Cyclobutadiene, L. Watts, J. D. Fitzpatrick, R. Pettit; J. Am. Chem. Soc.; 1965; 87(14); p. 3253-3254. Résumé
  5. Revisit of the Dessy-White Intramolecular Acetylene-Acetylene [2 + 2] Cycloadditions; Chung-Chieh Lee, Man-kit Leung, Gene-Hsiang Lee, Yi-Hung Liu, and Shie-Ming Peng; J. Org. Chem.; 2006; 71(22), p. 8417 - 8423. DOI 10.1021/jo061334v