Кобордизм


Кобордизм
«Штаны» — бордизм между окружностью и парой окружностей

Бордизм, также бордантность — термин топологии, употребляющийся самостоятельно или в составе стандартных словосочетаний в нескольких родственных смыслах, почти во всех из них вместо бордизм раньше говорили о кобордизмах, старая терминология тоже сохранилась.

Содержание

Неориентированные бордизмы

Неориентированные бордизмы — простейший вариант бордизмов. Два гладких замкнутых n-мерных многообразия M и M' бордантны (ограничивают, или внутренне гомологичны), если существует гладкое компактное (n + 1)-мерное многообразие W (называемое плёнка), край которого состоит из двух многообразий M и M', (или точнее многообразий M0 и M1 диффеоморфных, соответственно, M и M' посредством некоторых диффеоморфизмов g_0:M\to M_0 и g_1:M'\to M_1). Совокупность многообразий, бордантных друг другу, называется классами бордизмов, а тройку (W,M0,M1) называют бордизмом (точнее было бы говорить о пятёрке (W,M0,M1,g0,g1)). Множество классов бордизмов n-мерных многообразий образует абелеву группу \Omega_n^O относительно несвязного объединения, называемую группой бордизмов. Нулем в ней служит класс бордизмов, состоящих из многообразий, которые являются границей некоторого многообразия (другие названия: M — ограничивающее многообразие, M — внутренне гомологично, или бордантно нулю). Элементом \Omega_n^O обратным данному классу бордизмов, является сам этот класс (так как объединение двух копий M диффеоморфно границе прямого произведения M\times [0,1]). Прямая сумма \Omega_*^O групп \Omega_n^O является коммутативным градуированным кольцом, умножение в котором индуцировано прямым произведением многообразий, с единицей, заданной классом бордизмов точки.

Бордизмы с дополнительной структурой

Ориентированные бордизмы

Ориентированные бордизмы — наиболее простой тип бордизмов гладких замкнутых многообразий с дополнительной структурой. Два ориентированных многообразия M и M' ориентированно бордантны, если они бордантны в прежнем смысле, причём плёнка W ориентирована, и (в прежних обозначениях) ориентация, индуцированная ориентацией W на M0 и M1 (как на частях края), переходит при диффеоморфизмах g0 и g1, соответственно, в исходную ориентацию M и в ориентацию, противоположную исходной ориентации M'. Аналогично \Omega_n^O, и \Omega_*^O вводятся группы ориентированных бордизмов \Omega_n^{SO} и кольцо \Omega_*^{SO}.

Другие варианты

Другие варианты бордизмов многообразий с дополнительной структурой — очень важные бордизмы квазикомплексных многообразий (называемые также унитарными бордизмами), бордизмы многообразий, на которых действует группа преобразований, Spin-бордизмы. Имеются также варианты несколько иного рода, для кусочно линейных или топологических многообразий, для комплексов Пуанкаре и т. д. Особое положение занимают бордизмы слоений и h-бордизмы (ранее называемые J-эквивалентностями); последние служат для связи дифференциальной и гомотопической топологии.

Свойства

История

Первый пример — бордизм оснащённых многообразий, введённый в 1938 году Понтрягиным, который показал, что классификация этих бордизмов эквивалентна вычислению гомотопических групп сфер πi(Sn), и таким путём смог найти πn + 1(Sn) и πn + 2(Sn). Неориентированные и ориентированные бордизмы были введены в 1951—53 годах Рохлиным, вычислившим \Omega_n^{SO} для n\leqslant4. Понтрягин доказал, что если два многообразия бордантны, то у них совпадают характеристические числа Впоследствии оказалось, что обратное тоже верно.

Литература

  • Милнор Дж., Уоллес А. Дифференциальная топология / Пер. с англ. — М.: Мир, 1972. — 280 с.

См. также


Wikimedia Foundation. 2010.

Смотреть что такое "Кобордизм" в других словарях:

  • КОБОРДИЗМ — кобордизмов теория, обобщенная теория когомологий, определенная спектрами пространств Тома и связанная с различными структурами в стабильном касательном или нормальном расслоении к многообразию. Теория К. двойственна (в смысле S двойственности… …   Математическая энциклопедия

  • H-Кобордизм — бордизм (W;M,M ), где W компактное многообразие, край которого объединение непересекающихся замкнутых многообразий M и M , являющихся деформационными ретрактами W. Простейший пример тривиальный h кобордизм …   Википедия

  • h-Кобордизм — бордизм , где компактное дифференцируемое многообразие, край которого объединение непересекающихся замкнутых многообразий и , являющихся деформационными ретрактами . Простейший пример тривиальный …   Википедия

  • УЗЛОВ КОБОРДИЗМ — (правильнее бордизм узлов, см. Бордизм) отношение эквивалентности на множестве узлов, более слабое, чем изотопич. тип. Два гладких n мерных узла и наз. кобордантными, если существует гладкое ориентированное (n+1) мерное подмногообразие V… …   Математическая энциклопедия

  • H-кобордизм — …   Википедия

  • АЛГЕБРАИЧЕСКАЯ ТОПОЛОГИЯ — область математики, возникшая для изучения таких свойств гео метрич. фигур (в широком смысле любых объектов, где можно говорить о непрерывности) и их отображений друг в друга, к рые не меняются при непрерывных деформациях (гомотопиях). В принципе …   Математическая энциклопедия

  • БОРДИЗМ — бордантность, термин, употребляющийся самостоятельно или в составе стандартных словосочетаний в нескольких родственных смыслах (почти во всех из них вместо Б. раньше говорили о кобордизмах; старая терминология тоже сохранилась) . Простейший… …   Математическая энциклопедия

  • КРУЧЕНИЕ — 1) К. к р и в о й величина, характеризующая отклонение пространственной кривой от соприкасающейся плоскости. Пусть Р произвольная точка кривой и Q точка кривой близкая Р, угол между соприкасающимися плоскостями кривой в точках Ри Q, а длина… …   Математическая энциклопедия

  • МНОГОМЕРНЫЙ УЗЕЛ — изотопический класс вложений сферы в сферу. Более точно, re мерным узлом коразмерности q наз. пара , состоящая из ориентированной сферы и ее ориентированного локально плоского подмногообразия , гомеоморфного сфере . Два узла наз. эквивалентными,… …   Математическая энциклопедия

  • ОБОБЩЕННЫЕ ТЕОРИИ КОГОМОЛОГИИ — экстраординарные теории когомологий, класс специальных функторов из категории пар пространств в категорию градуированных абелевых групп. О. т. к. есть пара функтор из категории Рпар топологич. пространств в категорию GA градуированных абелевых… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.