Интерфейс (ООП)

Интерфейс (ООП)

Интерфейс (от лат. inter — между и лат. face — поверхность) — это семантическая и синтаксическая конструкция в коде программы, используемая для специфицирования услуг, предоставляемых классом или компонентом. Интерфейс определяет границу взаимодействия между классами или компонентами, специфицируя определенную абстракцию, которую осуществляет реализующая сторона. В отличие от многих других видов интерфейсов, интерфейс в ООП является строго формализованным элементом объектно-ориентированного языка и, в качестве семантической конструкции, широко используется кодом программы.

Содержание

Описание и использование интерфейсов

Описание ООП-интерфейса, если отвлечься от деталей синтаксиса конкретных языков, состоит из двух частей:

  • Имя интерфейса, которое строится по тем же правилам, что и другие идентификаторы используемого языка программирования. Разные языки и среды разработки имеют различные соглашения по оформлению кода, в соответствии с которыми имена интерфейсов могут формироваться по некоторым правилам, облегчающим отличение имени интерфейса от имён других элементов программы. Например, в технологии COM и всех поддерживающих её языках действует соглашение, согласно которому имя интерфейса строится по шаблону «I<Имя>», то есть состоит из написанного с заглавной буквы осмысленного имени, которому предшествует прописная латинская буква I (IUnknown, IDispatch, IStringList и так далее).
  • Методы интерфейса. В описании интерфейса определяются имена и сигнатуры входящих в него методов, то есть процедур или функций класса.

Использование интерфейсов возможно двумя способами:

  • Класс может реализовывать интерфейс. Реализация интерфейса заключается в том, что в описании класса данный интерфейс указывается как реализуемый, а в коде класса обязательно определяются все методы, которые описаны в интерфейсе, в полном соответствии с сигнатурами из описания этого интерфейса. То есть, если класс реализует интерфейс, для любого экземпляра этого класса существуют и могут быть вызваны все описанные в интерфейсе методы. Один класс может реализовать несколько интерфейсов одновременно.
  • Возможно объявление переменных и параметров методов как имеющих тип-интерфейс. В такую переменную или параметр может быть записан экземпляр любого класса, реализующего интерфейс. Если интерфейс объявлен как тип возвращаемого значения функции, это означает, что функция возвращает объект класса, реализующего данный интерфейс.

Как правило, в объектно-ориентированных языках программирования интерфейсы, как и классы, могут наследоваться друг от друга. В этом случае интерфейс-потомок включает все методы интерфейса-предка и, возможно, добавляет к ним свои собственные.

Таким образом, с одной стороны, интерфейс — это контракт, который обязуется выполнить класс, реализующий его, с другой стороны, интерфейс — это тип данных, потому что его описание достаточно четко определяет свойства объектов, чтобы наравне с классом типизировать переменные. Следует, однако, подчеркнуть, что интерфейс не является полноценным типом данных, так как он задаёт только внешнее поведение объектов. Внутреннюю структуру и реализацию заданного интерфейсом поведения обеспечивает класс, реализующий интерфейс; именно поэтому «экземпляров интерфейса» в чистом виде не бывает, и любая переменная типа «интерфейс» содержит экземпляры конкретных классов.

Использование интерфейсов — один из вариантов обеспечения полиморфизма в объектных языках и средах. Все классы, реализующие один и тот же интерфейс с точки зрения определяемого им поведения ведут себя внешне одинаково. Это позволяет писать обобщённые алгоритмы обработки данных, использующие в качестве типов параметров интерфейсы, и применять их к объектам различных типов, всякий раз получая требуемый результат.

Например, интерфейс «Cloneable» может описать абстракцию клонирования (создания точных копий) объектов, специфицировав метод «Clone», который должен выполнять копирование содержимого объекта в другой объект того же типа. Тогда любой класс, объекты которого может понадобиться копировать, должен реализовать интерфейс Cloneable и предоставить метод Clone, а в любом месте программы, где требуется клонирование объектов, для этой цели у объекта вызывается метод Clone. Причем использующему этот метод коду достаточно иметь только описание интерфейса, он может ничего не знать о фактическом классе, объекты которого копируются. Таким образом, интерфейсы позволяют разбить программную систему на модули без взаимной зависимости кода.

Интерфейсы и абстрактные классы

Можно заметить, что интерфейс, фактически — это просто чистый абстрактный класс, то есть класс, в котором не определено ничего, кроме абстрактных методов. Если язык программирования поддерживает множественное наследование и абстрактные методы (как, например, C++), то необходимости во введении отдельного понятия «интерфейс» не возникает. Аналогичные сущности описываются в виде абстрактных классов и наследуются классами для реализации абстрактных методов.

Однако поддержка множественного наследования в полном объёме достаточно сложна и вызывает множество проблем, как на уровне реализации языка, так и на уровне архитектуры приложений. Введение понятия интерфейсов является компромиссом, позволяющим получить многие преимущества множественного наследования, не реализуя его в полном объёме и не сталкиваясь, таким образом, с большинством вызванных им трудностей.

Множественное наследование и реализация интерфейсов

Как правило, языки программирования разрешают наследовать интерфейс от нескольких интерфейсов-предков. Все методы, объявленные в интерфейсах-предках, становятся частью объявления интерфейса-потомка. В отличие от наследования классов, множественное наследование интерфейсов гораздо проще реализуется и не вызывает существенных затруднений.

Тем не менее, одна коллизия при множественном наследовании интерфейсов и при реализации нескольких интерфейсов одним классом всё-таки возможна. Она возникает, когда в двух или более интерфейсах, наследуемых новым интерфейсом или реализуемых классом, имеются методы с одинаковыми сигнатурами. Разработчики языков программирования вынуждены выбирать для таких случаев те или иные способы разрешения противоречий. Вариантов здесь несколько:

  • Запрет. В одном классе просто запрещается реализовывать несколько интерфейсов, имеющих методы с одинаковыми сигнатурами. Если для какого-то класса требуется комбинация несовместимых интерфейсов, программист должен выбрать другой путь решения проблемы, например, выделить несколько классов, каждый из которых реализует один из необходимых интерфейсов, и использовать их экземпляры совместно.
  • Явное разрешение неоднозначности. В случае обнаружения компилятором коллизии от программиста требуется явно указать, метод какого из интерфейсов он реализует и вызывает. То есть одноимённые методы реализуются раздельно, а при вызове указывается, какой из них вызывается. Вариантом этого решения является явное переименование для совпадающих по именам наследуемых или реализуемых методов, за счёт чего в пределах реализующего класса нет одноимённых методов, но при обращении через интерфейс всегда вызывается нужная реализация.
  • Общая реализация одноимённых методов. Если наследуется или реализуется несколько методов с одной и той же сигнатурой, то они объединяются в интерфейсе-наследнике, а в классе-реализаторе получают одну общую реализацию. Это хорошо подходит для случаев, когда одноимённые методы разных интерфейсов идентичны по предполагаемой функциональности, но может вызвать нежелательные эффекты, если поведение этих методов должно различаться.

Интерфейсы в конкретных языках и системах

Реализация интерфейсов во многом определяется исходными возможностями языка и целью, с которой интерфейсы введены в него. Очень показательны особенности использования интерфейсов в языках C++, Java и Object Pascal системы Delphi, поскольку они демонстрируют три принципиально разные ситуации:

  • В объектной подсистеме языка Object Pascal никаких интерфейсов не было, их поддержка была введена в Delphi 2 для обеспечения написания и использования COM-компонентов. Соответственно, механизм интерфейсов Delphi ориентирован, в первую очередь, на использование технологии COM.
  • В Java интерфейсы изначально входят в язык, являясь неотъемлемой его частью.
  • В C++ интерфейсов, строго говоря, нет вообще. Механизм, аналогичный интерфейсам (и, исторически предшествующий им) реализуется другими средствами чрезвычайно мощной объектной подсистемы этого языка.

Delphi

В COM технологии фирмы Delphi напоминают классы. Как все классы являются наследниками класса IUnknown, соответствующего стандартному одноимённому COM-интерфейсу.

Пример объявления интерфейса:

  IMyInterface = interface
    procedure DoSomething;
  end;

Для того, чтобы объявить о реализации интерфейсов, в описании класса необходимо указать их имена в скобках после ключевого слова class, после имени класса-предка. Так как интерфейс — это контракт, который нужно выполнить, программа не компилируется пока в реализующем классе не будет реализована procedure DoSomething;

Вышеупомянутая ориентированность интерфейсов Delphi на технологию COM привела к некоторым неудобствам. Дело в том, что интерфейс IUnknown (от которого наследуются все остальные интерфейсы) уже содержит три метода: QueryInterface,_AddRef, _Release, следовательно, любой класс, реализующий любой интерфейс, обязан реализовать эти методы, даже если интерфейс и класс не имеют никакого отношения к COM.

Пример класса, реализующего интерфейс

  TMyClass = class(TMyParentClass, IMyInterface)
    procedure DoSomething;
    function QueryInterface(const IID: TGUID; out Obj): HResult; stdcall;
    function _AddRef: Integer; stdcall;
    function _Release: Integer; stdcall;
  end;

Программист должен правильно реализовать методы QueryInterface,_AddRef, _Release. Чтобы избавиться от необходимости писать стандартные методы, предусмотрен библиотечный класс TInterfacedObject - он реализует три вышеупомянутых метода и любой класс, наследуемый от него и его потомков, получает эту реализацию:

Пример класса — наследника TInterfacedObject

  TMyClass = class(TInterfacedObject, IMyInterface)
    procedure DoSomething;
  end;

Недостатком такого решения является ограничение на структуру дерева классов: невозможно унаследовать класс, реализующий интерфейс, от какого-либо другого своего класса.


C++

C++ поддерживает множественное наследование и абстрактные классы, поэтому, как уже упоминалось выше, отдельная синтаксическая конструкция для интерфейсов в этом языке не нужна. Интерфейсы заменяют абстрактные классы, а реализация интерфейса производится путём наследования этих классов.

Пример определения интерфейса:

/**
*   interface.Openable.hpp
*
*/
#ifndef INTERFACE_OPENABLE_HPP
#define INTERFACE_OPENABLE_HPP
// Класс интерфейса iOpenable. Определяет возможность открытия/закрытия чего либо.
class iOpenable
{
    public:
    virtual ~iOpenable(){}
 
    virtual void open()=0;
    virtual void close()=0;
};
#endif

Интерфейс реализуется через наследование. Благодаря наличию множественного наследования, ничто не мешает реализовать в одном классе несколько интерфейсов, если в этом есть необходимость:

/**
*   class.Door.hpp
*
*/
#include <interface.Openable.hpp>
#include <iostream>
 
class Door: public iOpenable
{
    public:
    Door(){std::cout << "Door object created" << std::endl;}
    virtual ~Door(){}
 
    //Конкретезация методов интерфейса iOpenable для класса Door
    virtual void open(){std::cout << "Door opened" << std::endl;}
    virtual void close(){std::cout << "Door closed" << std::endl;}
 
    //Специфические для класса Door свойства и методы
    std::string mMaterial;
    std::string mColor;
    //...
};
/**
*   class.Book.hpp
*
*/
#include <interface.Openable.hpp>
#include <iostream>
 
class Book: public iOpenable
{
    public:
    Book(){std::cout << "Book object created" << std::endl;}
    virtual ~Book(){}
 
    //Конкретезация методов интерфейса iOpenable для класса Book
    virtual void open(){std::cout << "Book opened" << std::endl;}
    virtual void close(){std::cout << "Book closed" << std::endl;}
 
    //Специфические для класса Book свойства и методы
    std::string mTitle;
    std::string mAuthor;
    //...
};

Тестируем все вместе:

/**
*   test.Openable.cpp
*
*/
#include <interface.Openable.hpp>
#include <class.Door.hpp>
#include <class.Book.hpp>
 
//Функция открытия/закрытия любых разнородных объектов в которых реализован интерфейс iOpenable
void openAndCloseSomething(iOpenable& smth)
{
    smth.open();
    smth.close();
}
 
int main()
{
    Door myDoor;
    Book myBook;
 
    openAndCloseSomething(myDoor);
    openAndCloseSomething(myBook);
    return 0;
}

Java

В отличие от C++, класс в объекты от интерфейсов в

Объявление интерфейсов

Объявление интерфейсов очень похоже на упрощенное объявление классов.

Оно начинается с заголовка. Сначала указываются модификаторы. Интерфейс может быть объявлен как public и тогда он будет доступен для общего использования, либо модификатор доступа может не указываться, в этом случае интерфейс доступен только для типов своего пакета. Модификатор abstract для интерфейса не требуется, поскольку все интерфейсы являются абстрактными. Его можно указать, но делать этого не рекомендуется, чтобы не загромождать код.

Далее записывается ключевое слово interface и имя интерфейса.

После этого может следовать ключевое слово extends и список интерфейсов, от которых будет наследоваться объявляемый интерфейс. Родительских типов может быть много, главное, чтобы не было повторений и чтобы отношение наследования не образовывало циклической зависимости.

Наследование интерфейсов действительно очень гибкое. Так, если есть два интерфейса, A и B, причем B наследуется от A, то новый интерфейс C может наследоваться от них обоих. Впрочем, понятно, что указание наследования от A является избыточным, все элементы этого интерфейса и так будут получены по наследству через интерфейс B.

Затем в фигурных скобках записывается тело интерфейса.

public interface Drawable extends Colorable, Resizable {
}

Тело интерфейса состоит из объявления элементов, то есть полей-констант и абстрактных методов. Все поля интерфейса автоматически являются public final static, так что эти модификаторы указывать необязательно и даже нежелательно, чтобы не загромождать код. Поскольку поля являются финальными, необходимо их сразу инициализировать.

public interface Directions {
  int RIGHT=1;
  int LEFT=2;
  int UP=3;
  int DOWN=4;
}

Все методы интерфейса являются public abstract и эти модификаторы также необязательны.

public interface Moveable {
  void moveRight();
  void moveLeft();
  void moveUp();
  void moveDown();
}

Как мы видим, описание интерфейса гораздо проще, чем объявление класса.

Реализация интерфейса

Для реализации интерфейса, он должен быть указан при декларации класса с помощью ключевого слова implements. Пример:

interface I
{
   void interfaceMethod();
}
 
public class ImplementingInterface implements I
{
   void interfaceMethod()
   {
      System.out.println("Этот метод реализован из интерфейса I");
   }
 
   public static void main(String[] args)
   {
      ImplementingInterface temp = new ImplementingInterface();
      temp.interfaceMethod();
   }
}

Каждый класс может реализовывать любые доступные интерфейсы. При этом в классе должны быть реализованы все абстрактные методы, появившиеся при наследовании от интерфейсов или родительского класса, чтобы новый класс мог быть объявлен неабстрактным.

Если из разных источников наследуются методы с одинаковой сигнатурой, то достаточно один раз описать реализацию и она будет применяться для всех этих методов. Однако если у них различное возвращаемое значение, то возникает конфликт. Пример:

interface A {
  int getValue();
}
 
interface B {
  double getValue();
}
 
interface C {
  int getValue();
}
 
public class Correct implements A, C // класс правильно наследует методы с одинаковой сигнатурой
{
   int getValue()
   {
      return 5;
   }
}
 
class Wrong implements A, B // класс вызывает ошибку при компиляции
{
   int getValue()
   {
      return 5;
   }
 
   double getValue()
   {
      return 5.5;
   }
}

Интерфейсы в UML

Изображение интерфейса и реализующего его класса в UML используются для визуализации, специфицирования, конструирования и документирования стыковочных UML-узлов между составными частями системы. Типы и UML-роли обеспечивают механизм моделирования статического и динамического соответствия абстракции интерфейсу в конкретном контексте.

В классы со стереотипом «interface». Либо в виде кружочков, в этом случае содержащиеся в интерфейсе UML-операции не отображаются.


См. также

Ссылки


Wikimedia Foundation. 2010.

Поможем со сдачей теста

Полезное


Смотреть что такое "Интерфейс (ООП)" в других словарях:

  • Интерфейс (вычислительная техника) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (информатика) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (компьютеры) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (программирование) — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс системный — Интерфейс (от англ. interface  поверхность раздела, перегородка)  совокупность средств и методов взаимодействия между элементами системы. В зависимости от контекста, понятие применимо как к отдельному элементу (интерфейс элемента), так и к… …   Википедия

  • Интерфейс (объектно-ориентированное программирование) — У этого термина существуют и другие значения, см. Интерфейс (значения). Интерфейс (от лат. inter  «между», и face  «поверхность»)  семантическая и синтаксическая конструкция в коде программы, используемая для специфицирования… …   Википедия

  • Класс (ООП) — Класс, наряду с понятием «объект», является важным понятием объектно ориентированного подхода в программировании (хотя существуют и бесклассовые объектно ориентированные языки, например, Прототипное программирование). Под классом подразумевается… …   Википедия

  • Класс (программирование) — У этого термина существуют и другие значения, см. Класс. Класс в программировании набор методов и функций. Другие абстрактные типы данных  метаклассы, интерфейсы, структуры, перечисления  характеризуются какими то своими, другими… …   Википедия

  • Объектно-ориентированное программирование — Эта статья во многом или полностью опирается на неавторитетные источники. Информация из таких источников не соответствует требованию проверяемости представленной информации, и такие ссылки не показывают значимость темы статьи. Статью можно… …   Википедия

  • ООАП — Объектно ориентированное программирование (ООП) парадигма программирования, в которой основными концепциями являются понятия объектов и классов (либо, в менее известном варианте языков с прототипированием прототипов). Класс это тип, описывающий… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»