Индуцированное излучение

Индуцированное излучение
Электромагнитное излучение
Синхротронное
Циклотронное
Тормозное
Равновесное
Монохроматическое
Черенковское
Переходное
Радиоизлучение
Микроволновое
Терагерцевое
Инфракрасное
Видимое
Ультрафиолетовое
Рентгеновское
Гамма-излучение
Ионизирующее
Реликтовое
Магнито-дрейфовое
Двухфотонное
Вынужденное
Рис. 1a. Поглощение фотона.
Рис. 1б. Вынужденное испускание фотона.
Рис. 1в. Спонтанное испускание фотона.

Вы́нужденное излуче́ние, индуци́рованное излучение — генерация нового фотона при переходе квантовой системы (атома, молекулы, ядра и т. д.) из возбуждённого в стабильное состояние (меньший энергетический уровень) под воздействием индуцирующего фотона, энергия которого была равна разности энергий уровней. Созданный фотон имеет те же энергию, импульс, фазу и поляризацию, что и индуцирующий фотон (который при этом не поглощается). Оба фотона являются когерентными.

Содержание

Введение. Теория Эйнштейна

Большой вклад в разработку вопроса о вынужденном излучении (испускании) внес А. Эйнштейн. Гипотеза Эйнштейна состоит в том, что под действием электромагнитного поля частоты ω молекула (атом) может:

  • перейти с более низкого энергетического уровня ~E_1 на более высокий ~E_2 с поглощением фотона энергией \hbar \omega = E_2 - E_1 (см. рис. 1a);
  • перейти с более высокого энергетического уровня ~E_2 на более низкий ~E_1 с испусканием фотона энергией \hbar \omega = E_2 - E_1 (см. рис. 1б);
  • кроме того, как и в отсутствие возбуждающего поля, остаётся возможным самопроизвольный переход молекулы (атома) с верхнего на нижний уровень с испусканием фотона энергией \hbar \omega = E_2 - E_1 (см. рис. 1в).

Первый процесс принято называть поглощением, второй — вынужденным (индуцированным) испусканием, третий — спонтанным испусканием. Скорость поглощения и вынужденного испускания фотона пропорциональна вероятности соответствующего перехода: B_{12} \cdot u и ~B_{21} \cdot u, где ~B_{12}, ~B_{21} — коэффициенты Эйнштейна для поглощения и испускания, ~uспектральная плотность излучения.

Число переходов ~\mathrm{d}n_1 с поглощением света выражается как


        \mathrm{d}n_1 = B_{12}u \cdot n_1 \mathrm{d}t, \qquad\qquad (1)

с испусканием света даётся выражением:


        \mathrm{d}n_2 = (A_{21}+B_{21}u) \cdot n_2 \mathrm{d}t, \qquad (2)

где  ~A_{21} — коэффициент Эйнштейна, характеризующий вероятность спонтанного излучения, а ~n_1, n_2 — число частиц в первом или во втором состоянии соответственно. Согласно принципу детального равновесия, при термодинамическом равновесии число квантов света ~\mathrm{d}n_1 при переходах 1 \to 2 должно равняться числу квантов ~\mathrm{d}n_2, испущенных в обратных переходах 2 \to 1.

Между коэффициентами Эйнштейна существует связь, которую мы сейчас найдем.

Связь между коэффициентами

Рассмотрим замкнутую полость, стенки которой испускают и поглощают электромагнитное излучение. Такое излучение характеризуется спектральной плотностью ~u(\omega,T), получаемой из формулы Планка:


        u(\omega,T)=\frac{\hbar \omega^3 }{\pi^2 c^3}
               \cdot \frac{1}
                          {\mathrm{exp}(\hbar \omega / kT) -1}. \qquad\qquad (3)

Так как мы рассматриваем термодинамическое равновесие, то ~\mathrm{d}n_1 = \mathrm{d}n_2. Используя уравнения (2) и (3), находим для состояния равновесия:

~
        B_{12} u(\omega,T) n_1 = (A_{21}+B_{21} u(\omega,T)) n_2,

откуда:


         \frac{n_2}{n_1}= \frac{B_{12} u(\omega,T) }{A_{21}+B_{21} u(\omega,T)}. \qquad\qquad (4)

При термодинамическом равновесии распределение частиц по уровням энергии подчиняется закону Больцмана:


          \frac{n_2}{n_1}  = \frac{g_2}{g_1} \cdot \mathrm{exp}	\left(- \frac{E_2-E_1}{kT} \right),         \qquad\qquad (5)

где ~g_1 и ~g_2 — статистические веса уровней, показывающие количество независимых состояний квантовой системы, имеющих одну и ту же энергию (вырожденных). Будем считать для простоты, что статвеса уровней равны единице.

Итак, сравнивая (4) и (5) и принимая во внимание, что \hbar \omega = E_2 - E_1, получим:


        u(\omega,T) =  \frac{A_{21}}{B_{12} \mathrm{exp}( \hbar \omega / kT) - B_{21}}. \qquad\qquad (6)

Так как при ~T \to \infty спектральная плотность излучения должна неограниченно возрастать, то нам следует положить знаменатель равным нулю, откуда имеем:

~
        B_{12}=B_{21}.

Далее, сопоставив (3) и (6), легко получить:


        B_{21}= \frac{\pi^2c^3}{\hbar\omega^3} \cdot A_{21}.

Последние два соотношения справедливы для любых комбинаций уровней энергии. Их справедливость сохраняется и при отстутствии равновесия, так как определяются только характеристикой систем и не зависят от температуры.

Свойства вынужденного испускания

По свойствам вынужденное испускание существенно отличается от спонтанного.

  • Наиболее характерная черта вынужденного излучения заключается в том, что возникший поток распространяется в том же направлении что и первоначальный возбуждающий поток.
  • Частоты и поляризация вынужденного и первоначального излучений также равны.
  • Вынужденный поток когерентен возбуждающему.

Применение

На вынужденном излучении основан принцип работы лазеров и мазеров. В рабочем теле лазера путём накачки создаётся избыточное (по сравнению с термодинамическим ожиданием) количество атомов в верхнем энергетическом состоянии. Рабочее тело газового лазера находится в резонаторе (в простейшем случае — пара зеркал), создающем условия для накапливания фотонов с определённым направлением импульса. Первоначальные фотоны возникают за счёт спонтанного излучения, затем их поток лавинообразно усиливается благодаря вынужденному излучению. Лазеры обычно используются для генерации излучения, тогда как мазеры, работающие в области радиочастот, применяются также и для усиления.

Последние открытия

Британские ученые смогли замедлить испускание фотона при помощи "побочных продуктов", остающихся при изготовлении квантовых точек. Статья опубликована в журнале Physical Review Letters. Ее основные положения приведены в пресс-релизе Университета Ворвика, сотрудники которого принимали участие в исследовании.

В своей работе физики "замедляли" свет, продлевая время жизни экситона. Экситон представляет собой квазичастицу, возникающую при выбивании электрона фотоном с его энергетического уровня на более высокий (говорят, что электрон переходит в возбужденное состояние). Электрон и образовавшаяся на его месте "дырка" оказываются связаны друг с другом посредством зарядовых взаимодействий. Когда электрон возвращается на прежний энергетический уровень, он занимает место "дырки", а выбивший его фотон испускается системой.

Экситоны могут иметь различную природу. В частности, пару электрон-"дырка" может содержать кольцеобразный фрагмент материала, образовавшийся при производстве квантовых точек - изолированных нанообъектов, свойства которых заметно отличаются от свойств более крупных кусков такого же состава.

Авторы работы показали, что воздействие на такой квантовый бублик определенной комбинацией электрических и магнитных полей способно существенно замедлить скорость возвращения электрона на место "дырки" и испускания фотона.

Авторы работы считают, что у разработанной ими технологии большое будущее. Например, задержка испускания света может помочь в создании компьютеров, в которых фотоны используются для передачи информации.

См. также

Литература

А. Л. Микаэлян, М. Л. Тер-Микаелян Ю. Г. Турков. «Оптические генераторы на твёрдом теле». М.: Советское радио, 1967.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Индуцированное излучение" в других словарях:

  • ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ — ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ, то же, что вынужденное излучение …   Современная энциклопедия

  • ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ — то же, что вынужденное излучение …   Большой Энциклопедический словарь

  • ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ — то же, что см. (см. ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ). Физический энциклопедический словарь. М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1983 …   Физическая энциклопедия

  • Индуцированное излучение — ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ, то же, что вынужденное излучение.   …   Иллюстрированный энциклопедический словарь

  • индуцированное излучение — то же, что вынужденное излучение. * * * ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ, то же, что вынужденное излучение (см. ВЫНУЖДЕННОЕ ИЗЛУЧЕНИЕ) …   Энциклопедический словарь

  • индуцированное излучение — priverstinis spinduliavimas statusas T sritis fizika atitikmenys: angl. forced radiation; induced radiation; stimulated radiation vok. erzwungene Strahlung, f; induzierte Strahlung, f; stimulierte Strahlung, f rus. вынужденное излучение, n;… …   Fizikos terminų žodynas

  • ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ — вынужденное излучение, излучение электромагнитных волн частицами в ва (атомами, молекулами и др.) под действием внеш. (вынуждающего) электромагн. излучения. Частота, фаза, направление распространения и поляризация И. и. те же, что и у… …   Большой энциклопедический политехнический словарь

  • индуцированное излучение — (см. индукция) вынужденное излучение излучение атомов или молекул, вызываемое внешним электромагнитным полем; лежит в основе работы лазеров и мазеров. Новый словарь иностранных слов. by EdwART, , 2009 …   Словарь иностранных слов русского языка

  • Индуцированное излучение —         то же, что Вынужденное излучение …   Большая советская энциклопедия

  • ИНДУЦИРОВАННОЕ ИЗЛУЧЕНИЕ — то же, что вынужденное излучение …   Естествознание. Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»