Е173

Е173
Алюминий(Al)
Атомный номер 13
Внешний вид простого вещества мягкий, лёгкий,
серебристо-белый металл,
быстро окисляющийся
Свойства атома
Атомная масса
(молярная масса)
26,981539 а. е. м. (г/моль)
Радиус атома 143 пм
Энергия ионизации
(первый электрон)
577,2(5,98) кДж/моль (эВ)
Электронная конфигурация [Ne] 3s² 3p¹
Химические свойства
Ковалентный радиус 118 пм
Радиус иона 51 (+3e) пм
Электроотрицательность
(по Полингу)
1,61
Электродный потенциал -1,66 в
Степени окисления 3
Термодинамические свойства простого вещества
Плотность 2698,9 кг/м³ 2,6989 г/см³
Удельная теплоёмкость 930 Дж/(K·кг) 25,093 Дж/(K·моль)
Теплопроводность 237 Вт/(м·K)
Температура плавления 933,5 K
Теплота плавления 398 кДж/кг 10,75 кДж/моль
Температура кипения 2792 K
Теплота испарения 10,53 мДж/кг 284,1 кДж/моль
Молярный объём 10,0 см³/моль
Кристаллическая решётка простого вещества
Структура решётки кубическая гранецентрированая
Период решётки 4,050 Å
Отношение c/a n/a
Температура Дебая 394,00 K
Al 13
26,981539
3s²3p¹
Алюминий

Алюми́ний (лат. Aluminium) — химический элемент под номером 13 в таблице Менделеева. Наиболее распространённый металл и третий по распространённости химический элемент (после O, Si) в земной коре.

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, немагнитный серебристо-белый металл, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой теплопроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

По некоторым биологическим исследованиям поступление алюминия в организм человека было сочтено фактором в развитии болезни Альцгеймера,[1][2] но эти исследования были позже раскритикованы и вывод о связи одного с другим опровергался.[3][4][5]

Содержание

История

Схема атома алюминия

Впервые алюминий был получен Гансом Эрстедом в 1825 году действием амальгамы калия на хлорид алюминия с последующей отгонкой ртути.

Получение

Современный метод получения был разработан независимо американцем Чарльзом Холлом и французом Полем Эру. Он заключается в растворении оксида алюминия Al2O3 в расплаве криолита Na3AlF6 с последующим электролизом с использованием графитовых электродов. Такой метод получения требует больших затрат электроэнергии, и поэтому оказался востребован только в XX веке.

Для производства 1 т алюминия требуется 1,9 т глинозёма и 18 тыс. кВт·ч электроэнергии.

Физические свойства

Металл серебристо-белого цвета, легкий, плотность 2,7 г/см³, температура плавления у технического 658 °C, у алюминия высокой чистоты 660 °C, температура кипения 2500 °C, временное сопротивление литого 10-12 кг/мм², деформируемого 18-25 кг/мм2,сплавов 38-42 кг/мм².

Твердость по Бринеллю 24-32 кгс/мм², высокая пластичность: у технического 35 %, у чистого 50 %, прокатывается в тонкий лист и даже фольгу.

Алюминий обладает высокой электропроводностью и теплопроводностью, 65 % от электропроводности меди, обладает высокой светоотражательной способностью.

Алюминий образует сплавы почти со всеми металлами.

Нахождение в природе

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al, со следами 26Al, радиоактивного изотопа с периодом полураспада 720 000 лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространенности в природе занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 процентов от массы земной коры.[6]

В природе алюминий встречается только в соединениях (минералах). Вот некоторые из них:

Химические свойства

Гидроксид алюминия

При нормальных условиях алюминий покрыт тонкой и прочной оксидной плёнкой и потому не реагирует с классическими окислителями: с H2O (t°);O2, HNO3 (без нагревания). Благодаря этому алюминий практически не подвержен коррозии и потому широко востребован современной индустрией. Однако, при разрушении оксидной плёнки (например, при контакте с растворами солей аммония NH4+, горячими щелочами или в результате амальгамирования), алюминий выступает как активный металл-восстановитель.

Легко реагирует с простыми веществами:

1) с кислородом:

4Al + 3O2 = 2Al2O3

2) с галогенами:

2Al + 3Br2 = 2AlBr3

3) с другими неметаллами реагирует при нагревании:

с серой, образуя сульфид алюминия:

2Al + 3S = Al2S3

с азотом, образуя нитрид алюминия:

2Al + N2 = 2AlN

с углеродом, образуя карбид алюминия:

4Al + 3С = Al4С3

Сульфид и карбид алюминия полностью гидролизуются:

Al2S3 + 6H2O = 2Al(OH)3 + 3H2

Al4C3 + 12H2O = 4Al(OH)3+ 3CH4­

Со сложными веществами:

4) с водой (после удаления защитной оксидной пленки, например, амальгамированием или растворами горячей щёлочи):

2Al + 6H2O = 2Al(OH)3 + 3H

5) со щелочами (с образованием тетрагидроксоалюминатов и других алюминатов):

2Al + 2NaOH + 6H2O = 2Na[Al(OH)4] + 3H

2(NaOH•H2O) + 2Al = 2NaAlO2 + 3H2

6) Легко растворяется в соляной и разбавленной серной кислотах:

2Al + 6HCl = 2AlCl3 + 3H

2Al + 3H2SO4(разб) = Al2(SO4)3 + 3H2

При нагревании растворяется в кислотах — окислителях, образующих растворимые соли алюминия:

2Al + 6H2SO4(конц) = Al2(SO4)3 + 3SO2 + 6H2O

Al + 6HNO3(конц) = Al(NO3)3 + 3NO + 3H2O

7) восстанавливает металлы из их оксидов (алюминотермия):

8Al + 3Fe3O4 = 4Al2O3 + 9Fe

2Al + Cr2O3 = Al2O3 + 2Cr

Применение

Кусок алюминия и американская монетка.

Широко применяется как конструкционный материал. Основные достоинства алюминия в этом качестве — лёгкость, податливость штамповке, коррозионная стойкость (на воздухе алюминий мгновенно покрывается прочной плёнкой Al2O3, которая препятствует его дальнейшему окислению), высокая теплопроводность, неядовитость его соединений. В частности, эти свойства сделали алюминий чрезвычайно популярным при производстве кухонной посуды, алюминиевой фольги в пищевой промышленности и для упаковки.

Основной недостаток алюминия как конструкционного материала — малая прочность, поэтому его обычно сплавляют с небольшим количеством меди и магния (сплав называется дюралюминий).

Электропроводность алюминия всего в 1,7 раза меньше, чем у меди, при этом алюминий приблизительно в 2 раза дешевле. Поэтому он широко применяется в электротехнике для изготовления проводов, их экранирования и даже в микроэлектронике при изготовлении проводников в чипах. Меньшую электропроводность алюминия (37 1/ом) по сравнению с медью (63 1/ом) компенсируют увеличением сечения алюминиевых проводников. Правда, у алюминия как электротехнического материала есть неприятное свойство — из-за прочной оксидной плёнки его тяжело паять.

производство алюминия
  • Благодаря комплексу свойств широко распространён в тепловом оборудовании.
  • Алюминий и его сплавы сохраняют прочность при сверхнизких температурах. Благодаря этому он широко используется в криогенной технике.
  • Высокий коэффициент отражения в сочетании с дешевизной и лёгкостью напыления делает алюминий идеальным материалом для изготовления зеркал.
  • В производстве строительных материалов как газообразующий агент.
  • Алитированием придают коррозионную и окалиностойкость стальным и другим сплавам, например клапанам поршневых ДВС, лопаткам турбин, нефтяным платформам, теплообменной аппаратуре, а также заменяют цинкование.
  • Сульфид алюминия используется для производства сероводорода.
  • Идут исследования по разработке пенистого алюминия как особо прочного и лёгкого материала.

В качестве восстановителя

  • Как компонент термита, смесей для алюмотермии
  • Алюминий применяют для восстановления редких металлов из их оксидов или галогенидов.

Сплавы на основе алюминия

В качестве конструкционного материала обычно используют не чистый алюминий, а разные сплавы на его основе.

Алюминиевый прокат
  • Алюминиево-магниевые сплавы обладают высокой коррозионной стойкостью и хорошо свариваются; из них делают, например, корпуса быстроходных судов.
  • Алюминиево-марганцевые сплавы во многом аналогичны алюминиево-магниевым.
  • Алюминиево-медные сплавы (в частности, дюралюминий) можно подвергать термообработке, что намного повышает их прочность. К сожалению, термообработанные материалы нельзя сваривать, поэтому детали самолётов до сих пор соединяют заклёпками. Сплав с бо́льшим содержанием меди по цвету внешне очень похож на золото, и его иногда применяют для имитации последнего.
  • Алюминиево-кремниевые сплавы (силумины) лучше всего подходят для литья. Из них часто отливают корпуса разных механизмов.
  • Комплексные сплавы на основе алюминия: авиаль.
  • Алюминий переходит в сверхпроводящее состояние при температуре 1,2 Кельвина.

Алюминий как добавка в другие сплавы

Алюминий является важным компонентом многих сплавов. Например, в алюминиевых бронзах основные компоненты — медь и алюминий. В магниевых сплавах в качестве добавки чаще всего используется алюминий. Для изготовления спиралей в электронагревательных приборах используют (наряду с другими сплавами) фехраль (Fe, Cr, Al).

Ювелирные изделия

Когда алюминий был очень дорог, из него делали разнообразные ювелирные изделия. Мода на них сразу прошла, когда появились новые технологии его получения, во много раз снизившие себестоимость. Сейчас алюминий иногда используют в производстве бижутерии.

Стекловарение

В стекловарении используются фторид, фосфат и оксид алюминия.

Пищевая промышленность

Алюминий зарегистрирован в качестве пищевой добавки Е173.

Алюминий и его соединения в ракетной технике

Алюминий и его соединения используются в качестве высокоэффективного ракетного горючего в двухкомпонентных ракетных топливах и в качестве горючего компонента в твёрдых ракетных топливах. Следующие соединения алюминия представляют наибольший практический интерес как ракетное горючее:

  • Алюминий: горючее в ракетных топливах. Применяется в виде порошка и суспензий в углеводородах и др.
  • Гидрид алюминия.
  • Боранат алюминия.
  • Триметилалюминий.
  • Триэтилалюминий.
  • Трипропилалюминий.

Теоретические характеристики топлив, образованных гидридом алюминия с различными окислителями.

Окислитель Удельная тяга (Р1, сек) Температура сгорания °С Плотность топлива, г/см³ Прирост скорости, ΔVид, 25, м/с Весовое содерж. горючего, %
Фтор 348,4 5009 1,504 5328 25
Тетрафторгидразин 327,4 4758 1,193 4434 19
ClF3 287,7 4402 1,764 4762 20
ClF5 303,7 4604 1,691 4922 20
Перхлорилфторид 293,7 3788 1,589 4617 47
Фторид кислорода 326,5 4067 1,511 5004 38,5
Кислород 310,8 4028 1,312 4428 56
Перекись водорода 318,4 3561 1,466 4806 52
N2O4 300,5 3906 1,467 4537 47
Азотная кислота 301,3 3720 1,496 4595 49

Алюминий в мировой культуре

Поэт Андрей Вознесенский написал в 1959 году стихотворение «Осень»[7], в котором использовал алюминий в качестве художественного образа:

…А за окошком в юном инее
лежат поля из алюминия…

Виктор Цой написал песню «Алюминиевые огурцы» с припевом:

Сажаю алюминиевые огурцы
На брезентовом поле
Я сажаю алюминиевые огурцы
На брезентовом поле

Примечания

  1. Shcherbatykh I, Carpenter DO (May 2007). «The role of metals in the etiology of Alzheimer’s disease». J. Alzheimers Dis. 11 (2): 191—205.
  2. Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (July 2000). «Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study». Am. J. Epidemiol. 152 (1): 59-66
  3. Rondeau V (2002). «A review of epidemiologic studies on aluminum and silica in relation to Alzheimer’s disease and associated disorders». Rev Environ Health 17 (2): 107-21.
  4. Martyn CN, Coggon DN, Inskip H, Lacey RF, Young WF (May 1997). «Aluminum concentrations in drinking water and risk of Alzheimer’s disease». Epidemiology 8 (3): 281-6.
  5. Graves AB, Rosner D, Echeverria D, Mortimer JA, Larson EB (September 1998). «Occupational exposures to solvents and aluminium and estimated risk of Alzheimer’s disease». Occup Environ Med 55 (9): 627-33.
  6. Н. В. Короновский, А. Ф. Якушова. Основы геологии
  7. А. Вознесенский. Осень

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Е173" в других словарях:

  • Алюминий — 13 Магний ← Алюминий → Кремний B ↑ Al ↓ Ga …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»