Диофантов анализ


Диофантов анализ

Диофа́нтово уравнение или уравнение в целых числах — это уравнение с целыми коэффициентами и неизвестными, которые могут принимать только целые значения. Названы в честь древнегреческого математика Диофанта.

Содержание

Линейные диофантовы уравнения

Общий вид линейного диофантова уравнения: ax+by+\ldots+cz=d. В литературе под диофантовыми уравнениями иногда понимаются также уравнения более частного вида — с двумя неизвестными:

ax+by=c\qquad(1)

которые достаточно хорошо изучены.

Если (a,b) \nmid c (то есть c не делится нацело на НОД(a,\;b)), то уравнение (1) не разрешимо в целых числах. В самом деле, в этом случае (a,\;b) \ne 1, но тогда число, стоящее слева в (1) делится на (a,\;b), а стоящее справа — нет. Если в уравнении ax + by = 1 (a,\;b)=1, то оно разрешимо в целых числах.

Пусть (x_0,\;y_0) — решение уравнения ax + by = c. Тогда все его решения находятся по следующим формулам:

x = x0bn, y = y0 + an, n \in\mathbb Z.

Начальное (базисное) решение (x_0,\;y_0) можно построить таким образом. Если (a, b) \ne 1, то (если уравнение имеет решения) c делится на (a, b) в силу вышесказанного. Тогда уравнение сводится к виду a1x + b1y = c1 путем деления всех коэффициентов на (a,b). Для уравнения ax + by = c с (a,b) = 1 базисное решение получается из соотношения Безу для a, b:

ua + vb = 1,

исходя из которого, можно положить (x_0,\;y_0) = (c\cdot u,\;c\cdot v).

Некоторые другие уравнения

  • xn + yn = zn:
  • x2ny2 = 1, где n не является точным квадратом — уравнение Пелля
  • xzyt = 1, где z,t > 1, — уравнение Каталана
  • \sum_{i=0}^n a_i x^i y^{n-i} = c при n\ge 3 и c\ne 0 — уравнения Туэ

Неразрешимость в общем виде

Десятая проблема Гильберта, сформулированная в 1900 г., состоит в нахождении алгоритма решения произвольных диофантовых уравнений. В 1970 г. Юрий Матиясевич доказал алгоритмическую неразрешимость этой проблемы.

См. также



Wikimedia Foundation. 2010.

Смотреть что такое "Диофантов анализ" в других словарях:

  • Диофантов анализ — см. Неопределенный анализ …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • ДИОФАНТОВ АНАЛИЗ — см. Диофантова геометрия …   Математическая энциклопедия

  • ДИОФАНТОВА ГЕОМЕТРИЯ — диофантов анализ, область математики, посвященная изучению целочисленных и рациональных решений систем алгебраич. уравнений, или, иначе, изучению диофантовых уравнений, методами алгебраич. геометрии. Появление во 2 й пол. 19 в. теории алгебраич.… …   Математическая энциклопедия

  • Эйлер, Леонард — В Википедии есть статьи о других людях с такой фамилией, см. Эйлер. Леонард Эйлер Leonhard Euler …   Википедия

  • Л. Эйлер — Леонард Эйлер Leonhard Euler Портрет 1756 года, выполненный Эмануэлем Хандманном Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября …   Википедия

  • Эйлер Леонард — Леонард Эйлер Leonhard Euler Портрет 1756 года, выполненный Эмануэлем Хандманном Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября …   Википедия

  • Эйлер Л. — Леонард Эйлер Leonhard Euler Портрет 1756 года, выполненный Эмануэлем Хандманном Дата рождения: 4 (15) апреля 1707 Место рождения: Базель, Швейцария Дата смерти: 7 (18) сентября …   Википедия

  • Арифметика (Диофант) — Обложка издания 1621 года, перевод на латинский язык Клода Гаспара Баше де Мезириака. Арифметика старинная греческая рукопись по математике, созданная мате …   Википедия

  • Бейкер, Алан — Алан Бейкер англ. Alan Baker …   Википедия