Временная сложность алгоритма

Временная сложность алгоритма

В информатике, теория сложности вычислений является разделом теории вычислений, изучающим стоимость работы, требуемой для решения вычислительной проблемы. Стоимость обычно измеряется абстрактными понятиями времени и пространства, называемыми вычислительными ресурсами. Время определяется количеством тривиальных шагов, необходимых для решения проблемы, тогда как пространство определяется объёмом памяти или места на носителе данных. Таким образом, в этой области предпринимается попытка ответить на центральный вопрос разработки алгоритмов: «как изменится время исполнения и объём занятой памяти в зависимости от размера входа и выхода?». Здесь под размером входа понимается длина описания данных задачи в битах (например, в задаче коммивояжера длина входа пропорциональна количеству городов и дорог между ними), а под размером выхода — длина описания решения задачи (оптимального маршрута в задаче коммивояжера).

В частности, теория сложности вычислений определяет NP-полные задачи, которые недетерминированная машина Тьюринга может решить за полиномиальное время, тогда как для детерминированной машины Тьюринга полиномиальный алгоритм неизвестен. Обычно это сложные проблемы оптимизации, например, задача коммивояжера.

Временная и пространственная сложности

Теория сложности вычислений возникла из потребности сравнивать быстродействие алгоритмов, чётко описывать их поведение (время исполнения и объём необходимой памяти) в зависимости от размера входа и выхода.

Количество элементарных операций, затраченных алгоритмом для решения конкретного экземпляра задачи, зависит не только от размера входных данных, но и от самих данных. Например, количество операций алгоритма сортировки вставками значительно меньше в случае, если входные данные уже отсортированы. Чтобы избежать подобных трудностей, рассматривают понятие временной сложности алгоритма в худшем случае.

Временная сложность алгоритма (в худшем случае) — это функция размера входных и выходных данных, равная максимальному количеству элементарных операций, проделываемых алгоритмом для решения экземпляра задачи указанного размера. Во многих задачах размер выхода не превосходит или пропорционален размеру входа — в этом случае можно рассматривать временную сложность как функцию размера только входных данных.

Аналогично понятию временной сложности в худшем случае определяется понятие временная сложность алгоритма в наилучшем случае. Также рассматривают понятие среднее время работы алгоритма, то есть математическое ожидание времени работы алгоритма. Иногда говорят просто: «Временная сложность алгоритма» или «Время работы алгоритма», имея в виду временную сложность алгоритма в худшем, наилучшем или среднем случае (в зависимости от контекста).

По аналогии с временной сложностью, определяют пространственную сложность алгоритма, только здесь говорят не о количестве элементарных операций, а о количестве затраченной памяти.

Асимптотическая сложность

Несмотря на то, что функция временной сложности алгоритма в некоторых случаях может быть определена точно, в большинстве случаев искать точное её значение бессмысленно. Дело в том, что во-первых, точное значение временной сложности зависит от определения элементарных операций (например, сложность можно измерять в количестве арифметических операций или операций на машине Тьюринга), а во-вторых, при увеличении размера входных данных вклад постоянных множителей и слагаемых низших порядков, фигурирующие в выражении для точного времени работы, становится крайне незначительным. Рассмотрение входных данных большого размера и оценка порядка роста времени работы алгоритма, приводит к понятию асимптотической сложности алгоритмов. Обычно алгоритм с меньшей асимптотической сложностью является более эффективным для всех входных данных, за исключением лишь, возможно, данных малого размера. Для записи асимптотической сложности алгоритмов используются асимптотические обозначения:

Обозначение Интуитивное объяснение Определение
f(n) \in O(g(n)) f ограничена сверху функцией g (с точностью до постоянного множителя) асимптотически \exists (C>0), n_0 : \forall(n>n_0) \; |f(n)| \leq |Cg(n)| или   \exists (C>0), n_0 : \forall(n>n_0) \; f(n) \leq Cg(n)
f(n) \in \Omega(g(n)) f ограничена снизу функцией g (с точностью до постоянного множителя) асимптотически \exists (C>0), n_0 : \forall (n>n_0) \; |Cg(n)| \leq |f(n)|
f(n) \in \Theta(g(n)) f ограничена снизу и сверху функцией g асимптотически \exists (C,C'>0), n_0 : \forall (n>n_0) \; |Cg(n)| < |f(n)| < |C'g(n)|
f(n) \in o(g(n)) g доминирует над f асимптотически \forall (C>0),\exists n_0 : \forall(n>n_0) \; |f(n)| < |Cg(n)|
f(n) \in \omega(g(n)) f доминирует над g асимптотически \forall (C>0),\exists n_0 : \forall(n>n_0) \; |Cg(n)| < |f(n)|
f(n) \sim g(n)\! f эквивалентна g асимптотически \lim_{n \to \infty} \frac{f(n)}{g(n)} = 1

Примеры

  • «пропылесосить ковер» требует время, линейно зависящее от его площади (Θ(A)), то есть на ковер, площадь которого больше в два раза, уйдет в два раза больше времени. Соответственно, при увеличении размера ковра в сто тысяч раз, объем работы увеличивается строго пропорционально в сто тысяч раз, и т. п.
  • «найти имя в телефонной книге» требует всего лишь время, логарифмически зависящее от количества записей (O(log2(n))), так как открыв книгу примерно в середине, мы уменьшаем размер «оставшейся проблемы» вдвое (за счет сортировки имен по алфавиту). Таким образом, в книге, толщиной в 1000 страниц, любое имя находится не больше чем за \log_2 1000 \approx 10 раз (открываний книги). При увеличении объема страниц до ста тысяч, проблема все еще решается за \log_2 100000 \approx 17 заходов. (См. Двоичный поиск.)

Замечания

Необходимо подчеркнуть, что степень роста наихудшего времени выполнения — не единственный или самый важный критерий оценки алгоритмов и программ. Приведем несколько соображений, позволяющих посмотреть на критерий времени выполнения с других точек зрения:

  1. Если создаваемая программа будет использована только несколько раз, тогда стоимость написания и отладки программы будет доминировать в общей стоимости программы, то есть фактическое время выполнения не окажет существенного влияния на общую стоимость. В этом случае следует предпочесть алгоритм, наиболее простой для реализации.
  2. Если программа будет работать только с «малыми» входными данными, то степень роста времени выполнения будет иметь меньшее значение, чем константа, присутствующая в формуле времени выполнения[1]. Вместе с тем и понятие «малости» входных данных зависит от точного времени выполнения конкурирующих алгоритмов. Существуют алгоритмы, такие как алгоритм целочисленного умножения, асимптотически самые эффективные, но которые никогда не используют на практике даже для больших задач, так как их константы пропорциональности значительно превосходят подобные константы других, более простых и менее «эффективных» алгоритмов. Другой пример — фибоначчиевы кучи, несмотря на асимптотическую эффективность, с практической точки зрения программная сложность реализации и высокие значения констант в формулах времени работы делают их меннее привлекательными, чем обычные бинарные пирамиды[2].
Если решение некоторой задачи для n-вершинного графа при одном алгоритме занимает время (число шагов) порядка nC, а при другом — порядка n+n!/C, где C — постоянное число, то согласно «полиномиальной идеологии» первый алгоритм практически эффективен, а второй — нет, хотя, например, при С=10(1010) дело обстоит как раз наоборот.

— А. А. Зыков [3]

  1. Эффективные, но сложные алгоритмы могут быть нежелательными, если готовые программы будут поддерживать лица, не участвующие в написании этих программ. Будем надеяться, что принципиальные моменты технологии создания эффективных алгоритмов широко известны, и достаточно сложные алгоритмы свободно применяются на практике. Однако необходимо предусмотреть возможность того, что эффективные, но «хитрые» алгоритмы не будут востребованы из-за их сложности и трудностей, возникающих при попытке в них разобраться.
  2. Известно несколько примеров, когда эффективные алгоритмы требуют таких больших объемов машинной памяти (без возможности использования более медленных внешних средств хранения), что этот фактор сводит на нет преимущество «эффективности» алгоритма.
  3. В численных алгоритмах точность и устойчивость алгоритмов не менее важны, чем их временная эффективность.

Классы сложности

Основная статья: Класс сложности

Класс сложности — это множество задач распознавания, для решения которых существуют алгоритмы, схожие по вычислительной сложности. Два важных представителя:

Класс P

Основная статья: Класс P

Класс P вмещает все те проблемы, решение которых считается «быстрым», то есть полиномиально зависящим от размера входа. Сюда относится сортировка, поиск во множестве, выяснение связности графов и многие другие.

Класс NP

Основная статья: класс NP

Класс NP содержит задачи, которые недетерминированная машина Тьюринга в состоянии решить за полиномиальное количество времени. Следует заметить, что недерминированная машина Тьюринга машина является лишь абстрактной моделью, в то время как современные компьютеры соответствуют детерминированной машине Тьюринга с ограниченной памятью. Таким образом, класс NP включает в себя класс P, а также некоторые проблемы, для решения которых известны лишь алгоритмы, экспоненциально зависящие от размера входа (т.е. неэффективные для больших входов). В класс NP входят многие знаменитые проблемы, такие как задача коммивояжёра, задача выполнимости булевых формул, факторизация и др.

Проблема равенства классов P и NP

Основная статья: Равенство классов P и NP

Вопрос о равенстве этих двух классов считается одной из самых сложных открытых проблем в области теоретической информатики. Математический институт Клэя включил эту проблему в список проблем тысячелетия, предложив награду размером в один миллион долларов США за её решение.

Знаменитые ученые

См. также

Ссылки

  1. Кормен, Томас Х.; Лейзерсон, Чарльз И.; Ривест, Рональд Л.; Штайн, Клифорд Алгоритмы: построение и анализ, 2-е издание = Introduction to Algorithms second edition. — М.: «Вильямс», 2005. — С. 71. — ISBN 5-8459-0857-4
  2. Кормен, Томас Х.; Лейзерсон, Чарльз И.; Ривест, Рональд Л.; Штайн, Клифорд Алгоритмы: построение и анализ, 2-е издание = Introduction to Algorithms second edition. — М.: «Вильямс», 2005. — С. 558 - 559. — ISBN 5-8459-0857-4
  3. А.А.Зыков Основы теории графов. — 3-е изд. — М.: Вузовская книга, 2004. — С. 10. — 664 с. — ISBN 5-9502-0057-8



Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Временная сложность алгоритма" в других словарях:

  • временная сложность (алгоритма) — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4748] Тематики защита информации EN time complexity …   Справочник технического переводчика

  • СЛОЖНОСТЬ ОПЕРАТОРСКОЙ ДЕЯТЕЛЬНОСТИ — совокупность объективных факторов, влияющих на качество и продолжительность выполнения человеком требуемых функций в СЧМ. С. о. д. разделяется на несколько видов, каждый из которых характеризуется совокупностью факторов, определенным образом… …   Энциклопедический словарь по психологии и педагогике

  • Вычислительная сложность — В информатике и теории алгоритмов вычислительная сложность алгоритма это функция, определяющая зависимость объёма работы, выполняемой некоторым алгоритмом, от размера входных данных. Раздел, изучающий вычислительную сложность, называется теорией… …   Википедия

  • АЛГОРИТМА СЛОЖНОСТЬ — вычислений функция, дающая числовую оценку трудности (громоздкости) процессов применения алгоритма к исходным данным. Уточнением А. с. вычислений служит понятие сигнализирующей функции (или просто сигнализирующей) функции, к рая задается… …   Математическая энциклопедия

  • Теория сложности вычислений — В информатике, теория сложности вычислений является разделом теории вычислений, изучающим стоимость работы, требуемой для решения вычислительной проблемы. Стоимость обычно измеряется абстрактными понятиями времени и пространства, называемыми… …   Википедия

  • Алгоритм сортировки — это алгоритм для упорядочения элементов в списке. В случае, когда элемент списка имеет несколько полей, поле, служащее критерием порядка, называется ключом сортировки. На практике в качестве ключа часто выступает число, а в остальных полях… …   Википедия

  • Методы сортировки — Алгоритм сортировки это алгоритм для упорядочения элементов в списке. В случае, когда элемент списка имеет несколько полей, поле, служащее критерием порядка, называется ключом сортировки. На практике в качестве ключа часто выступает число, а в… …   Википедия

  • Криптосистема Голдвассера-Микали — (GM)  криптографическая система с открытым ключом, разработанная Шафи Голдвассером и Сильвио Микали в 1982 году. GM является первой схемой вероятностного шифрования с открытым ключом, доказуемо стойкая при стандартных криптографических… …   Википедия

  • Криптосистема Голдвассер — Микали (GM)  криптографическая система с открытым ключом, разработанная Шафи Голдвассер (англ.)русск. и Сильвио Микали (англ.) …   Википедия

  • Сортировка подсчётом — алгоритм сортировки, в котором используется диапазон чисел сортируемого массива (списка) для подсчёта совпадающих элементов. Применение сортировки подсчётом целесообразно лишь тогда, когда сортируемые числа имеют (или их можно отобразить в)… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»