Колонизация Луны

Колонизация Луны

Колонизация Луны — заселение Луны человеком, являющееся как предметом фантастических произведений, так и реальных планов по строительству на Луне обитаемых баз.[1][2]

Лунная база (в представлении художника)
Лунная база с надувным модулем. Эскизный рисунок НАСА.
Лунный вездеход, загружаемый с грузового космического корабля. Эскизный рисунок
Лунная база с электромагнитной катапультой (протяжённое строение, уходящее за горизонт). Эскизный рисунок

Содержание

Фантастика

Постоянное обитание человека на другом небесном теле (за пределами Земли) уже давно является постоянной темой в научной фантастике.

Реальность

Бурное развитие космической техники позволяет думать, что колонизация космоса — вполне достижимая и оправданная цель. В силу своей близости к Земле (три дня полёта) и достаточно хорошей изученности ландшафта, Луна уже давно рассматривается как кандидат для места создания человеческой колонии. Но хотя советские программы «Луна» и «Луноход», а несколько позже и американская программа «Аполлон» продемонстрировали практическую осуществимость полёта на Луну (будучи при этом очень дорогостоящими проектами), они в то же время охладили энтузиазм создания лунной колонии. Это было вызвано тем, что анализ образцов пыли, доставленных космонавтами, показал очень низкое содержание в ней лёгких элементов[источник не указан 115 дней], необходимых для поддержания жизнеобеспечения.

Несмотря на это, с развитием средств космонавтики и удешевлением космических полётов, Луна представляется исключительно привлекательным объектом для колонизации. Для учёных лунная база является уникальным местом для проведения научных исследований в области планетологии, астрономии, космологии, космической биологии и других дисциплин. Изучение лунной коры может дать ответы на важнейшие вопросы об образовании и дальнейшей эволюции Солнечной системы, системы Земля — Луна, появлении жизни. Отсутствие атмосферы и более низкая гравитация позволяют строить на лунной поверхности обсерватории, оснащённые оптическими и радиотелескопами, способными получить намного более детальные и чёткие изображения удалённых областей Вселенной, чем это возможно на Земле, а обслуживать и модернизировать такие телескопы гораздо проще, чем орбитальные обсерватории.

Луна обладает и разнообразными полезными ископаемыми, в том числе и ценными для промышленности металлами — железом, алюминием, титаном; кроме этого, в поверхностном слое лунного грунта, реголите, накоплен редкий на Земле изотоп гелий-3, который может использоваться в качестве топлива для перспективных термоядерных реакторов. В настоящее время идут разработки методик промышленного получения металлов, кислорода и гелия-3 из реголита, найдены залежи водяного льда.

Глубокий вакуум и наличие дешёвой солнечной энергии открывают новые горизонты для электроники, литейного производства, металлообработки и материаловедения. Фактически условия для обработки металлов и создания микроэлектронных устройств на Земле менее благоприятны из-за большого количества свободного кислорода в атмосфере, ухудшающего качество литья и сварки, делающего невозможным получение сверхчистых сплавов и подложек микросхем в больших объёмах. Также представляет интерес выведение на Луну вредных и опасных производств.

Луна, благодаря своим впечатляющим ландшафтам и экзотичности, также выглядит как весьма вероятный объект для космического туризма, который может привлечь значительное количество средств на её освоение, способствовать популяризации космических путешествий, обеспечивать приток людей для освоения лунной поверхности. Космический туризм будет требовать определённых инфраструктурных решений. Развитие инфраструктуры, в свою очередь, будет способствовать более масштабному проникновению человечества на Луну.

Существуют планы использования лунных баз в военных целях для контроля околоземного космического пространства и обеспечения господства в космосе[3]. Директор Института космических исследований РАН Лев Зелёный считает, что приполярные области Луны можно использовать для размещения российской или международной научной базы[4].

Гелий-3 в планах освоения Луны

Терраформированная Луна, вид с Земли; рисунок художника

В январе 2006 года Николай Севастьянов, бывший президент Ракетно-космической корпорации «Энергия», официально объявил[5], что главной целью российской космической программы будет добыча на Луне гелия-3 путем переработки лунного реголита. «Постоянную станцию на Луне мы планируем создать уже к 2015 году, а с 2020 года может начаться промышленная добыча на спутнике Земли редкого изотопа — гелия-3». Летать к Луне будет многоразовый корабль «Клипер», а помогать ему в строительстве Лунной базы начнёт межорбитальный буксир «Паром». Однако, данные официального заявления остались на совести Н. Н. Севастьянова, поскольку Россия не признаёт существования у неё лунной программы наподобие американской. О других источниках финансирования также пока ничего не известно.

Присутствие гелия-3 в лунных минералах представители американского Национального агентства по космонавтике и аэронавтике США (NASA) также считают серьёзным поводом к освоению спутника. При этом первый полёт туда NASA планирует осуществить не раньше 2018 года. Китай и Япония также запланировали создание лунных баз, но это, скорее всего, произойдёт в 2020-х годах. До сих пор США остаётся единственным государством, представители которого побывали на Луне — с 1969 по 1972 год туда было отправлено 6 американских пилотируемых экспедиций.

Создание станции — не только вопрос науки и государственного престижа, но и коммерческой выгоды. Гелий-3 — это редкий изотоп, стоимостью приблизительно 1200 долларов США за литр газа[6], а на Луне его — миллионы килограммов (по минимальным оценкам — 500 тысяч тонн[7]). Гелий-3 нужен в ядерной энергетике — для запуска термоядерной реакции.

Учёные[8] считают, что гелий-3 можно будет применять в термоядерных реакторах. Чтобы обеспечивать энергией всё население Земли в течение года, по подсчётам учёных Института геохимии и аналитической химии им. В. И. Вернадского РАН, необходимо приблизительно 30 тонн гелия-3. Стоимость его доставки на Землю будет в десятки раз меньше, чем у вырабатываемой сейчас электроэнергии на атомных электростанциях.

При использовании гелия-3 не возникает долгоживущих радиоактивных отходов, и поэтому проблема их захоронения, так остро стоящая при эксплуатации реакторов на делении тяжёлых ядер, отпадает сама собой.

Однако существует и серьёзная критика этих планов. Дело в том, что для зажигания термоядерной реакции дейтерий+гелий-3 необходимо нагреть изотопы до температуры в миллиард градусов[источник не указан 558 дней] и решить задачу удержания нагретой до такой температуры плазмы. Современный технологический уровень позволяет удержать плазму, нагретую лишь до нескольких сотен миллионов градусов в реакции дейтерий+тритий, при этом почти вся энергия, полученная в ходе термоядерной реакции, затрачивается на удержание плазмы (см. ITER). Поэтому реакторы на гелии-3 многими ведущими учёными, например, академиком Роальдом Сагдеевым, выступившим с критикой планов Севастьянова, считаются делом отдалённого будущего. Более реальным с их точки зрения является разработка на Луне кислорода, металлургия, создание и запуск космических аппаратов, в том числе ИСЗ, межпланетных станций и пилотируемых кораблей.

Вода

На поверхности[9] Луны (миссии Дип Импакт (КА), Кассини (КА), Чандраян-1) и под её поверхностью[10][11] (миссия LCROSS) в районе полюсов обнаружена вода в виде льда, количество которого сильно зависит от освещенности Солнцем. Наличие воды очень важно для потенциальной лунной базы.

Лунные электростанции

Ключевые технологии имеют, по оценке НАСА, уровень технологической готовности 7. Рассматривается возможность большого объёма производства, равного 1000 ТВт. При этом стоимость лунного комплекса оценивается примерно в 200 трлн долл. США. В то же время стоимость производства сравнимого объёма электроэнергии наземными солнечными станциями — 8000 трлн долл. США, наземными термоядерными реакторами — 3300 трлн долл. США, наземными угольными станциями — 1500 трлн долл. США[12].

Практические шаги

Лунные базы в первой «Лунной гонке»

В ходе первой «лунной гонки» 1960-х гг. (а также чуть ранее и позже) две космические сверхдержавы — США и СССР — имели планы сооружения лунных баз, которые не были реализованы.

В США прорабатывались аванпроекты лунных военных баз Лунэкс (Lunex Project) и Горизонт (Project Horizon), а также имелись технические предложения по лунной базе Вернера фон Брауна.

Более детально, включая макеты экспедиционных транспортных средств[13] и обитаемых модулей[14], был разработан проект лунной базы СССР «Звезда», который должен был быть реализован в 1970-х—1980-х гг. как развитие советской лунной программы, свёрнутой после проигрыша СССР в «лунной гонке» с США.

Lunar Oasis

В октябре 1989 года на 40-м конгрессе Международной авиационной федерации сотрудники НАСА Майкл Дьюк (Michael Duke), глава подразделения исследований Солнечной системы Космического центра имени Линдона Джонсона в Хьюстоне, и Джон Ньехофф (John Niehoff) из Science Applications International Corporation (SAIC) представили проект лунной станции Lunar Oasis. До сих пор этот проект считается весьма проработанным и небезынтересным по ряду основных решений, одновременно оригинальных и реалистичных. Десятилетний проект Lunar Oasis предполагал три стадии, суммарно предусматривавшие 30 полётов, половина из которых пилотируемые (по 14 т груза); беспилотные старты оценивались по 20 т груза каждый.

Авторы называют стоимость проекта равным четырём программам «Аполлон», а это примерно $550 млрд в ценах 2011 года. Учитывая, что время реализации программы предполагалось весьма значительным (10 лет), ежегодные расходы на неё составили бы около $50 млрд. Для сравнения можно указать на то, что в 2011 году затраты на содержание американских войск в Афганистане достигли $6,7 млрд в месяц, или $80 млрд в год.[15]

Лунные базы в «Лунной гонке» XXI века

В начале XXI века США инициировали новую «лунную гонку», в которую, как в «лунную гонку за второе место», объявили о вступлении ещё несколько передовых космических держав. Все эти программы предусматривают создание на Луне баз.

НАСА разрабатывала космическую программу «Созвездие», в рамках которой должна разрабатываться новая космическая техника и создаваться необходимая инфраструктура для обеспечения полётов нового космического корабля к МКС, а также полётов на Луну, создания постоянной базы на Луне и в перспективе полётов на Марс[16]. Задачу картографирования возможных будущих мест посадок и базы решала в том числе станция Lunar Prospector ранее. Пилотируемые полёты на Луну планировались с 2019—2020 гг. Однако, по решению президента США Барака Обамы от 1 февраля 2010 года, финансирование программы в 2011 году прекращено[17].

В феврале 2010 года НАСА представило новый проект: «аватары» на Луне, который может быть реализован уже через 1000 дней. Суть его заключается в организации экспедиции на Луну с участием роботов-аватаров (представляющих собой устройство телеприсутствия) вместо людей. В этом случае инженеры, занимающиеся организацией полета, избавляют себя от необходимости использования важных систем жизнеобеспечения и благодаря этому используется менее сложный и дорогой космический корабль. Для управления роботами-аватарами эксперты НАСА предлагают использовать высокотехнологичные костюмы дистанционного присутствия (наподобие костюма виртуальной реальности). Один и тот же костюм могут «надевать» несколько специалистов из разных областей науки поочередно. К примеру, в ходе изучения особенностей лунной поверхности, управлять «аватаром» может геолог, а затем в костюм телеприсутствия может облачиться физик[18].

Россия объявила о возможности в случае финансирования как собственной или международной программы организации полётов на Луну с 2025 года и дальнейшем создании на ней базы[19].

Амбициозный план Европейского Космического Агентства «Аврора», предусматривает в конечном итоге после 2030 года экспедиции и базы на Луне. Первая европейская лунная станция Смарт-1 в течение года и семи месяцев занималась картографированием поверхности Луны, а также построением карт залегания различных минералов.

О своих планах освоения Луны не раз заявлял и Китай. 24 октября 2007 года с космодрома Сичан был успешно запущен первый китайский спутник Луны Чанъэ-1. В его задачи входило получение стереоснимков, с помощью которых впоследствии изготовят объёмную карту лунной поверхности. В будущем КНР рассчитывает основать на Луне обитаемую научную базу. Согласно китайской программе, освоение естественного спутника Земли намечено на 2040—2060 годы[20].

Японское агентство по космическим исследованиям планировало к 2030 году ввести в строй обитаемую станцию на Луне — на пять лет позже предполагавшихся ранее сроков. В 2007 году космической станцией «Кагуя» Япония начала орбитальные исследования Луны. В марте 2010 года Япония решила отказаться от пилотируемой лунной программы из-за её чрезмерной затратности в пользу роботизированных поселений.

Индия в 2008 году послала к Луне первую АМС «Чандраяан» с целью трёхмерного топографирования и радиозондирования для составления карты химических элементов поверхности в поисках металлов, воды и гелия-3. Индийская организация космических исследований представила планы по скорой отправке лунохода и совместных или независимых пилотируемых полётов к Луне в отдалённом будущем (после 2025—2030 г.).

Иллюстрация освоения Луны и Марса на совместном американо-советском почтовом блоке 1989 г.

Проблемы

Длительное присутствие человека на Луне будет требовать решения ряда проблем. Так, атмосфера Земли и магнитное поле задерживает бо́льшую часть солнечной радиации. В атмосфере также сгорает множество микрометеоритов. На Луне без решения радиационной и метеоритной[21] проблем невозможно создание условий для нормальной колонизации. Во время солнечных вспышек создаётся поток протонов и других частиц, способных представлять угрозу для космонавтов. Однако эти частицы обладают не слишком большой проникаемостью, и защита от них является решаемой проблемой. Кроме того, данные частицы обладают низкой скоростью, а значит, есть время для того чтобы укрыться в антирадиационные укрытия. Гораздо большую проблему представляет жёсткое рентгеновское излучение. Расчёты показали[22], что астронавт после 100 часов на поверхности Луны с вероятностью 10 % получит опасную для здоровья дозу (0,1 Грея). В случае же солнечной вспышки опасную дозу можно получить в течение нескольких минут.

Отдельную проблему представляет лунная пыль[23]. Лунная пыль состоит из острых частиц (поскольку нет сглаживающего влияния эрозии), а также обладает электростатическим зарядом. В результате лунная пыль проникает везде и, обладая абразивным действием, уменьшает срок работы механизмов. А попадая в лёгкие, становится угрозой здоровью человека.

Коммерциализация также не очевидна. Необходимость в больших количествах гелия-3 пока отсутствует. Наука ещё не смогла достичь контроля над термоядерной реакцией. Самым многообещающим проектом в этом отношении на данный момент (конец 2011 года) является масштабный международный экспериментальный реактор ИТЭР, строительство которого предполагается закончить в 2018 году. После этого последует порядка двадцати лет экспериментов. Промышленное использование термоядерного синтеза ожидается не ранее 2050 года по самым оптимистическим прогнозам. В связи с этим, до этого времени добыча гелия-3 не будет представлять промышленного интереса. Космический туризм также нельзя назвать движущей силой освоения Луны, поскольку требуемые на данном этапе вложения не смогут окупиться в разумное время за счёт туризма, что показывает опыт космического туризма на МКС, доходы от которого не покрывают и малой доли затрат на содержание станции. [источник не указан 705 дней]

Данное положение вещей приводит к тому, что высказываются предложения (см. Роберт Забрин «A Case for Mars») освоение космоса сразу начинать с Марса.

Фильмография

  • «Добыча полезных ископаемых на Луне» (англ. Mining the Moon) — научно-популярный фильм, снятый Discovery в 2011 г.
  • «Луна 2112» — художественный фильм о лунной базе, по сюжету базой управляет один человек, ведется добыча Гелия-3.

См. также

Примечания

  1. Артур Кларк. Бросок на Луну
  2. Артур Кларк. Лунная Пыль (1961)
  3. Академик Б. Е. Черток «Космонавтика в XXI веке»
  4. Лунные полюса могут стать обсерваториями - ученый. РИА Новости (1 февраля 2012). Архивировано из первоисточника 1 июня 2012. Проверено 2 февраля 2012.
  5. К 2015 году Россия создаст станцию на Луне, Kommersant.ru, 25.01.2006.
  6. Christina Reed (Discovery World) The Fallout of a Helium-3 Crisis (19 февраля 2011). Архивировано из первоисточника 9 февраля 2012.
  7. 3D News Колонизация Солнечной системы отменяется (4 марта 2007). Проверено 26 мая 2007.
  8. Принесенные солнечным ветром. Эксперт (19 ноября 2007). Архивировано из первоисточника 9 февраля 2012.
  9. Популярная механика. Лунная сенсация.. PopMech (25 сентября 2009). Архивировано из первоисточника 9 февраля 2012.
  10. LCROSS Impact Data Indicates Water on Moon. NASA (14 ноября 2009). Архивировано из первоисточника 9 февраля 2012.
  11. Популярная механика. Окончательное доказательство: ...И снова о воде.. PopMech (20 ноября 2009). Архивировано из первоисточника 9 февраля 2012.
  12. Ж. «Энергия будущего». март' 2006, с. 56
  13. LEK Lunar Expeditionary Complex
  14. DLB Module
  15. Компьюлента: Какой представлялась лунная база в 80-х
  16. официальная страница проекта «Созвездие»
  17. НАСА свернет полеты шаттлов и лунную программу
  18. Сайт NASAwatch.com: «Video: NASA JSC’s „Project M“».
  19. Space Race Rekindled? Russia Shoots for Moon, Mars, ABC News (2 сентября 2007). Проверено 2 сентября 2007.
  20. China.Com 中国嫦娥探月工程进展顺利 进度将有望加快 (кит.) (14 февраля 2006). Архивировано из первоисточника 9 февраля 2012. Проверено 26 мая 2007.
  21. CNews.Ru На Луне гораздо опаснее, чем полагало НАСА раньше (4 декабря 2006). Архивировано из первоисточника 9 февраля 2012. Проверено 26 мая 2007.
  22. CNews.Ru В лунной программе Буша выявлен фундаментальный изъян (24 января 2007). Архивировано из первоисточника 9 февраля 2012. Проверено 26 мая 2007.
  23. Популярная Механика Ядовитая лунная пыль (21 марта 2007). Архивировано из первоисточника 9 февраля 2012. Проверено 26 мая 2007.

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Колонизация Луны" в других словарях:

  • Колонизация космоса — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Колонизация Цереры — Церера. Цветной снимок с телескопа «Хаббл». Колонизация Цереры  один из потенциально возможных[1] …   Википедия

  • Колонизация Меркурия — В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете …   Википедия

  • Колонизация Марса — Стиль этой статьи неэнциклопедичен или нарушает нормы русского языка. Статью следует исправить согласно стилистическим правилам Википедии …   Википедия

  • Колонизация Солнечной системы — Эта статья предлагается к удалению. Пояснение причин и соответствующее обсуждение вы можете найти на странице Википедия:К удалению/2 октября 2012. Пока процесс обсуждени …   Википедия

  • Колонизация Венеры — представляет собой чрезвычайно сложную задачу в силу природных условий ныне существующих на ее поверхности, и рассматривается в контексте терраформирования этой планеты. Преобразованная Венера Содержание 1 Современные условия на Венере …   Википедия

  • Восход Луны — MoonRise Заказчик НАСА Производитель …   Википедия

  • Происхождение Луны — По современным данным во многих отношениях Луна весьма отличается от Земли, в первую очередь, химическим составом: практически нет воды (хотя в приполярных областях обнаружены заметные запасы льда[1]), малое содержание летучих элементов и… …   Википедия

  • Обратная сторона Луны — У этого термина существуют и другие значения, см. Обратная сторона Луны (значения). Обратная сторона Луны  часть лунной поверхности, кот …   Википедия

  • Фазы Луны — Фазы Луны …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»