Основы обработки сейсморазведочных материалов метода многократных перекрытий (МОГТ)

Основы обработки сейсморазведочных материалов метода многократных перекрытий (МОГТ)

Основы обработки сейсморазведочных материалов метода многократных перекрытий (МОГТ)

Метод общей глубинной точки (МОГТ или англ. common depth point, CDP) — метод сейсморазведки.

Сейсморазведка — метод геофизического исследования земных недр — имеет множество модификаций. Здесь мы рассмотрим только одну из них, метод отраженных волн, и, более того, обработку материалов, полученных методом многократных перекрытий, или, как он обычно называется, методом общей глубинной точки (МОГТ или CDP).

История

Родившись в начале 60-х годов прошлого века, он на многие десятилетия стал основным методом сейсморазведки. Бурно развиваясь как количественно, так и качественно, он полностью вытеснил простой метод отраженных волн (МОВ). С одной стороны это связано с не менее бурным развитием методов машинной (сначала аналоговой а потом цифровой) обработки, с другой — возможностью увеличения производительности полевых работ путем применения больших баз приема, невозможных в методе МОВ. Не последнюю роль сыграло здесь и удорожание работ, т.е повышение прибыльности сейсморазведки. Для оправдания удорожания работ были написаны множество книг и статей о пагубности кратных волн, которые с тех пор стали основой обоснования применения метода общей глубинной точки.

Однако этот переход от осциллографного МОВ к машинному МОГТ не был таким уж безоблачным. Метод МОВ был основан на увязке годографов во взаимных точках. Эта увязка надежно обспечивала отождествление годографов, принадлежащих одной отражающей границе. Метод не требовал для обеспечения фазовой корреляции никаких поправок — ни кинематических ни статических (dynamic and static corrections). Изменения формы коррелируемой фазы были напрямую связаны с изменениями свойствам отражающего горизонта, и только с ними. На корреляцию не влияли ни неточное знание скоростей отраженных волн, ни неточные статические поправки.

Увязка во взаимных точках невозможна на больших удалениях приемников от пункта возбуждения, поскольку годографы пересекаются цугами низкоскоростных волн помех. Поэтому обработчики МОГТ отказались от визуальной увязки взаимных точек, заменив их получением для каждой точки результата достаточно устойчивой формы сигнала путем получения этой формы суммированием примерно однородных составляющих. Точная количественная увязка времен заменена качественной оценкой формы получаемой суммарной фазы.

Процесс регистрации взрыва или любого другого, кроме вибросейса источника возбуждения аналогичен получению фотоснимка. Вспышка освещает окружающую среду и отклик этой среды фиксируется. Однако отклик на взрыв значительно сложнее, чем фотоснимок. Основная разница заключается в том, что фотоснимок запечатлевает отклик единственной, хотя и как угодно сложной поверхности, а взрыв вызывает отклик множества поверхностей, одна под или внутри другой. Причем каждая вышележащая поверхность накладывает свой отпечаток на изображение нижележащих. Этот эффект можно увидеть, если посмотреть сбоку на ложечку, погруженную в чай. Она кажется изломанной, в то время как мы твердо знаем, что излома нет. Сами по себе поверхности (границы геологического разреза) никогда не являются плоскими и горизонтальными, что и проявляется на их откликах — годографах.

Обработка

Суть обработки материалов МОГТ состоит в том, что каждая трасса результата получается суммированием исходных каналов таким образом, чтобы в сумму попадали сигналы, отраженные от одной и той же точки глубинного горизонта. Перед суммированием необходимо было ввести поправки во времена записи, чтобы преобразовать запись каждой отдельной трассы, привести ее к виду, аналогичному трассе на пункте взрыва, т.е преобразовать ее в форму t0. Такой была первичная задумка авторов метода. Разумеется, выбрать нужные каналы для суммирования, не зная строения среды, невозможно, и авторы поставили условием применения метода наличие горизонтально-слоистого разреза с углами наклона не выше 3 градусов. При этом координата отражающей точки достаточно точно равна полусумме координат приемника и источника.

Однако практика показала, что при нарушении этого условия ничего страшного не происходит, результативные разрезы имеют привычный вид. То, что при этом нарушается теоретическое обоснование метода, что суммируются уже не отражения от одной точки, а от площадки, тем большей, чем больше угол наклона горизонта, никого не волновало, ведь оценка качества и достоверности разреза была уже не точной, количественной, а приблизительной, качественной. Получается непрерывная ось синфазности, значит, все в порядке.

Поскольку каждая трасса результата — сумма некоторого набора каналов, а оценка качества результата производится по стабильности формы фазы, достаточно иметь стабильный набор наиболее сильных составляющих этой суммы, независимо от природы этих составляющих. Так, суммируя одни низкоскоростные помехи, мы получим вполне приличный разрез, примерно горизонтально-слоистый, богатый динамически. Конечно, он не будет иметь ничего общего с реальным геологическим разрезом, но вполне будет соответствовать требованиям к результату — устойчивости и протяженности фаз синфазности. В практической работе всегда в сумму попадает некоторое количество таких помех, и, как правило, амплитуда этих помех намного превышает амплитуду отраженных волн.

Вернемся к аналогии сейсморазведки и фотографии. Представим себе, что на темной улице нам встречается человек с фонарем, которым он светит нам в глаза. Как нам его рассмотреть? По-видимому, мы постараемся прикрыть рукой глаза, заслонить их от фонаря, тогда появляется возможность рассмотреть человека. Таким образом, мы разделяем суммарное освещение на составляющие, удаляем ненужное, сосредоточиваемся на нужном.

При обработке материалов МОГТ мы поступаем прямо наоборот — суммируем, объединяем нужное и ненужное, надеясь, что нужное само пробъется вперед. Более того. Из фотографии нам известно, что чем меньше элемент изображения (зернистость фотоматериала), тем лучше, подробнее снимок. Часто можно видеть в документальных телефильмах, когда нужно скрыть, исказить изображение, оно преподносится крупными элементами, за которыми можно увидеть некоторый объект, видеть его движения, но детально разглядеть такой объект просто невозможно. Именно это и происходит при суммировании каналов во время обработки материалов МОГТ.

Для того, чтобы получить синфазное сложение сигналов даже при идеально плоской и горизонтальной отражающей границе, необходимо обеспечить ввод поправок, идеально компенсирующих неоднородности рельефа и верхней части разреза. Так же идеально необходимо скомпенсировать кривизну годографа, чтобы переместить фазы отражения, полученные на удалениях от пункта возбуждения на времена, соответствующие времени прохождения сейсмического луча до отражающей поверхности и обратно по нормали к поверхности. И то, и другое невозможно без детального знания структуры верхней части разреза и формы отражающего горизонта, что обеспечить невозможно. Поэтому при обработке используются точечные, фрагментарные сведения о зоне малых скоростей и аппроксимация отражающих горизонтов горизонтальной плоскостью. Последствия этого и методы извлечения максимальной информации из богатейшего материала, предоставляемого МОГТ рассматриваются при описании «Доминантной обработки(Способ Байбекова)».

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Основы обработки сейсморазведочных материалов метода многократных перекрытий (МОГТ)" в других словарях:

  • Китайская Национальная Нефтегазовая корпорация — (CNPC) Китайская Национальная Нефтегазовая корпорация это одна из крупнейших нефтегазовых компаний мира Китайская Национальная Нефтегазовая корпорация занимается добычей нефти и газа, нефтехимическим производством, продажей нефтепродуктов,… …   Энциклопедия инвестора


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»