Газовая турбина

Газовая турбина
Промышленная газовая турбина в разобранном виде.

Га́зовая турби́на (фр. turbine от лат. turbo вихрь, вращение) — это двигатель непрерывного действия, в лопаточном аппарате которого энергия сжатого и/или нагретого газа преобразуется в механическую работу на валу.[1][2] Горение топлива может происходить как вне турбины, так и в самой турбине.[источник не указан 404 дня] Основными элементами конструкции являются ротор (рабочие лопатки, закреплённые на дисках) и статор, выполненный в виде выравнивающего аппарата (направляющие лопатки, закреплённые в корпусе).

Газовые турбины используются в составе газотурбинных двигателей, стационарных газотурбинных установок (ГТУ) и парогазовых установок (ПГУ).

Содержание

История

Попытки создать механизмы, похожие на турбины, делались очень давно. Известно описание примитивной паровой турбины, сделанное Героном Александрийским (1 в. до н. э.). В восемнадцатом веке англичанин Джон Барбер получил патент на устройство, которое имело большинство элементов, присутствующих в современных газовых турбинах. В 1872 году Франц Столц разработал газотурбинный двигатель.[источник не указан 404 дня] Однако только в конце XIX века, когда термодинамика, машиностроение и металлургия достигли достаточного уровня, Густаф Лаваль (Швеция) и Чарлз Парсонс (Великобритания) независимо друг от друга создали пригодные для промышленного использования паровые турбины.[3]

Принцип работы

Газ под высоким давлением поступает через сопловой аппарат турбины в область низкого давления, при этом расширяясь и ускоряясь. Далее, поток газа попадает на рабочие лопатки турбины, отдавая им часть своей кинетической энергии и сообщая лопаткам крутящий момент. Рабочие лопатки передают крутящий момент через диски турбины на вал. Газовая турбина чаще всего используется как привод генераторов.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Более сложные турбины (которые используются в современных турбореактивных двигателях), могут иметь несколько валов, сотни турбинных и статорных лопаток, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Упорные подшипники и радиальные подшипники являются критическими элементом разработки. Традиционно они были гидродинамические, или охлаждаемые маслом шарикоподшипники. Их превзошли воздушные подшипники, которые успешно используются в микротурбинах и вспомогательных силовых установках.

Типы газовых турбин

Газовые турбины часто используются во многих ракетах на жидком топливе, а также для питания турбонасосов, что позволяет использовать их в легковесных резервуарах низкого давления, хранящих значительную сухую массу.

Промышленные газовые турбины для производства электричества

Газовая турбина серии GE H. Эта 480-мегаваттная турбинная установка имеет тепловой кпд 60 % в конфигурациях комбинированного цикла.

Отличие промышленных газовых турбин от авиационных в том, что их массогабаритные характеристики значительно выше, они имеют каркас, подшипники и лопастную систему более массивной конструкции. По размерам промышленные турбины варьируются от монтируемых на грузовики мобильных установок до огромных комплексных систем. Парогазовые турбины могут иметь высокий КПД — до 60 % — при использовании выхлопа газовой турбины в рекуперативном генераторе пара для работы паровой турбины. С целью увеличения КПД они также могут работать в когенераторных конфигурациях: выхлоп используется в системах теплоснабжения - ГВС и отопления, а также с использыванием абсорбционных холодильных машинах в системах хладоснабжения. Одновременное использование выхлопа для получения тепла и холода называется режимом тригенерации. Коэффициент использования топлива в тригенераторном режиме, в сравнении с когенераторным может достигать более 90 %.[источник не указан 404 дня]

Турбины в больших промышленных газовых турбинах работают на синхронных с частотой переменного тока скоростях — 3000 или 3600 оборотов в минуту (об./мин.).[источник не указан 404 дня]

Газовые турбины простого цикла могут выпускаться как для большой, так и для малой мощности. Одно из их преимуществ — способность входить в рабочий режим в течение нескольких минут, что позволяет использовать их как мощность во время пиковых нагрузок. Поскольку они менее эффективны, чем электростанции комбинированного цикла, они обычно используются как пиковые электростанции и работают от нескольких часов в день до нескольких десятков часов в год, в зависимости, от потребности в электроэнергии и генерирующей емкости. В областях с недостаточной базовой нагрузкой и на электростанциях, где электрическая мощность выдается в зависимости от нагрузки, газотурбинная установка может регулярно работать в течение большей части суток. Типичная турбина простого цикла может выдавать от 100 до 300 мегаватт (МВт) мощности и иметь тепловой КПД 35-40 %.[источник не указан 404 дня] Максимальные КПД турбин простого цикла достигает 41 %.[источник не указан 404 дня]

Микротурбины

Отчасти, успех микротурбин обусловлен развитием электроники, делающей возможной работу оборудования без вмешательства человека. Микротурбины применяются в самых сложных проектах автономного электроснабжения.

Преимущества и недостатки газотурбинных двигателей

Преимущества газотурбинных двигателей

  • Очень высокое отношение мощности к весу, по сравнению с поршневым двигателем;
  • Возможность получения большего количества пара при работе (в отличие от поршневого двигателя)
  • В сочетании с паровым котлом и паровой турбиной более высокий КПД по сравнению с поршневым двигателем
  • Перемещение только в одном направлении, с намного меньшей вибрацией, в отличие от поршневого двигателя.
  • Меньшее количество движущихся частей, чем у поршневого двигателя.
  • Существенно меньше выбросов вредных веществ по сравнению с поршневыми двигателями
  • Низкие эксплуатационные нагрузки.
  • Низкая стоимость и потребление смазочного масла.
  • Низкие требования к качеству топлива. ГТД потребляют любое горючее, которое можно распылить: газ, нефтепродукты, органические вещества и пылеобразный уголь.

Недостатки газотурбинных двигателей

  • Стоимость намного выше, чем у аналогичных по размерам поршневых двигателей, поскольку материалы применяемые в турбине должны иметь высокую жаростойкость и жаропрочность, а также высокую удельную прочность. Машинные операции также более сложные;
  • Имеют меньший КПД при любом режиме работы, чем поршневые двигатели. (Официальные данные (стр.3) КПД на максимальной нагрузке 25-33%, при этом Официальные данные по поршневым двигателям - 41-42%)
  • Низкий механический и электрический КПД (потребление газа более чем в 1.5 раза больше на 1 кВтЧ электроэнергии по сравнению с поршневым двигателем)
  • Резкое снижение КПД на малых нагрузках (в отличие от поршневого двигателя)
  • Необходимость использования газа высокого давления, что обуславливает необходимость применения дожимных компрессоров с дополнительным расходом энергии и падением общей эффективности системы.
  • Задержка отклика на изменения настроек мощности.
  • Медленный запуск и выход на режим
  • Существенное влияние пусков-остановов на ресурс

Эти недостатки объясняют, почему дорожные транспортные средства, которые меньше, дешевле и требуют менее регулярного обслуживания, чем танки, вертолеты и крупные катера, не используют газотурбинные двигатели, несмотря на неоспоримые преимущества в размере и мощности. А также то, почему в аэропортах при короткой стыковке двигатели самолета не останавливают - излишне потребленное топливо дешевле ремонта турбин из-за пусков-остановов.

Примечания

  1. ГОСТ Р 51852-2001 Установки газотурбинные. Термины и определения  (рус.) (2003). — «Газовая турбина: компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу.»  Архивировано из первоисточника 25 июня 2012. Проверено 11 ноября 2011.
  2. Д. Н. Ушаков. Толковый словарь Ушакова. — 1940.
  3. Константин Владиславович Рыжов. [lib.aldebaran.ru/author/ryzhov_konstantin/ryzhov_konstantin_100_velikih_izobretenii/ 100 великих изобретений]. — М., 2006. — ISBN 5‑9533‑0277‑0

Литература

  • Дейч М. Е. Техническая газодинамика. — М.: Энергия, 1974.
  • Дейч М. Е. Газодинамика решёток турбомашин. — М.: Энергоатомиздат, 1996.

См. также

Ссылки



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Газовая турбина" в других словарях:

  • ГАЗОВАЯ ТУРБИНА — (Gas turbine) турбина, которая по идее должна работать газами, образуемыми при сгорании в особых камерах твердого, жидкого или газообразного горючего. Трудности создания условий для получения этим путем газов достаточно высокого давления и низкой …   Морской словарь

  • газовая турбина — турбина Компонент газотурбинного двигателя, преобразующий потенциальную энергию нагретого рабочего тела под давлением в механическую работу. [ГОСТ Р 51852 2001] газовая турбина Тепловой турбинный двигатель, в лопаточном аппарате которого энергия… …   Справочник технического переводчика

  • ГАЗОВАЯ ТУРБИНА — турбина, в лопаточном аппарате к рой энергия газа, находящегося под давлением и имеющего высокую темп ру, преобразуется в механич. работу на валу. Г. т. состоит из последовательно располож. неподвижных лопаточных венцов соплового аппарата и… …   Большой энциклопедический политехнический словарь

  • ГАЗОВАЯ ТУРБИНА — ГАЗОВАЯ ТУРБИНА, турбина, в которой тепловая энергия сжатого и нагретого газа (обычно продукты сгорания топлива) преобразуется в механическую работу; входит в состав газотурбинного двигателя. Мощность газовой турбины обычно до 200 МВт. Кпд около… …   Современная энциклопедия

  • ГАЗОВАЯ ТУРБИНА — турбина, в которой в механическую работу преобразуется тепловая энергия сжатого и нагретого газа (обычно продукты сгорания топлива); входит в состав газотурбинного двигателя …   Большой Энциклопедический словарь

  • ГАЗОВАЯ ТУРБИНА — ГАЗОВАЯ ТУРБИНА, см. ТУРБИНА …   Научно-технический энциклопедический словарь

  • Газовая турбина — ГАЗОВАЯ ТУРБИНА, турбина, в которой тепловая энергия сжатого и нагретого газа (обычно продукты сгорания топлива) преобразуется в механическую работу; входит в состав газотурбинного двигателя. Мощность газовой турбины обычно до 200 МВт. Кпд около… …   Иллюстрированный энциклопедический словарь

  • ГАЗОВАЯ ТУРБИНА — (си.), в которой энергия нагретого и предварительно сжатого газа с помощью лопаточного аппарата преобразуется в энергию вращения (см.) турбины …   Большая политехническая энциклопедия

  • Газовая турбина — устройство для выработки электроэнергии, использующее в качестве рабочего тела продукты сгорания органического топлива... Источник: Постановление Госгортехнадзора РФ от 18.03.2003 N 9 Об утверждении правил безопасности систем газораспределения и… …   Официальная терминология

  • газовая турбина — турбина, в лопаточном аппарате которой энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую работу на валу. Нагревание сжатого газа может осуществляться в камере сгорания, ядерном реакторе и др.… …   Энциклопедия техники


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»