Интеграл Пуассона

Интеграл Пуассона

Интегра́л Пуассо́на позволяет найти решение задачи Дирихле для уравнения Лапласа в шаре.

Пусть для гармонической в шаре функции u(r, φ) поставлено условие равенства на границе функции u0: u(R, φ) = u0(φ), при этом функции принадлежат следующим классам гладкости: u(r, \varphi)\in C^2(D)\cap C(\overline{D}),\ u_0(\varphi)\in C^1(\partial D), где ∂D — граница шара D, а \overline{D} — его замыкание. Тогда решение такой задачи Дирихле представимо в виде интеграла Пуассона:

u(r,\varphi)= \frac{R^2 - r^2}{\omega_n R} \int\limits_{\partial D} \frac{u_0(\psi)}{|r - \psi|^n}\,dS(\psi),\ r\in[0; R),

где ωn — площадь единичной сферы, а n — размерность пространства.

Вывод формулы в двумерном случае

Известно, что функция


u(r, \varphi)=a_0+\sum_{n=1}^\infty \left ( \frac{r}{R} \right ) ^n (a_n\cos n\varphi + \tilde{a}_n\sin n\varphi)

является решением задачи Дирихле для уравнения Лапласа в круге. Преобразуем это выражение с учётом выражений для коэффициентов Фурье:


u(r,\varphi)=\frac{1}{2\pi}\int\limits_0^{2\pi}u_0(\psi)d\psi+\frac{1}{\pi}\sum_{n=1}^\infty\left (\frac{r}{R}\right)^n\left (\cos n\varphi\int\limits_0^{2\pi}u_0(\psi)\cos n\psi d\psi+\sin n\varphi\int\limits_0^{2\pi}u_0(\psi)\sin(n\psi)d\psi\right )=


=\frac{1}{\pi}\int\limits_0^{2\pi}u_0(\psi)\left (\sum_{n=1}^\infty\left ( \frac{r}{R}\right ) ^n(\cos n\varphi\cos n\psi+\sin n\varphi\sin n\psi)\right ) d\psi+\frac{1}{2\pi}\int\limits_0^{2\pi}u_0(\psi)d\psi=


=\frac{1}{\pi}\int\limits_0^{2\pi}u_0(\psi)\left ( \frac{1}{2}+\sum_{n=1}^\infty\left ( \frac{r}{R}\right )^n\cos n(\varphi-\psi)\right )d\psi.

Последнюю сумму можно вычислить при 0≤r<R:


\frac{1}{2}+\sum_{n=1}^\infty\left ( \frac{r}{R}\right )^n\cos n(\varphi-\psi)=\frac{1}{2}+\operatorname{Re}\sum_{n=1}^\infty\left (\frac{r}{R}e^{i(\varphi-\psi)}\right )^n=\frac{1}{2}+\operatorname{Re}\frac{\frac{r}{R}e^{i(\varphi-\psi)}}{1-\frac{r}{R}e^{i(\varphi-\psi)}}=


=\frac{1}{2}+\operatorname{Re}\frac{\frac{r}{R}e^{i(\varphi-\psi)}\left (1-\frac{r}{R}e^{-i(\varphi-\psi)}\right )}{1-2\frac{r}{R}\cos(\varphi-\psi)+\left ( \frac{r}{R}\right )^2}=\frac{R^2-r^2}{2\left ( R^2+r^2-2Rr\cos(\varphi-\psi)\right )}.

Таким образом, в преобразованном виде интеграл Пуассона для круга приобретает вид:


u(r, \varphi)=\frac{R^2-r^2}{2\pi}\int\limits_0^{2\pi}\frac{u_0(\psi)d\psi}{R^2+r^2-2Rr\cos(\varphi-\psi)},\ r\in[0,R).

Литература

В.М. Уроев. Уравнения математической физики. — М.: ИФ Яуза, 1998. — ISBN 5-88923-026-3


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Полезное


Смотреть что такое "Интеграл Пуассона" в других словарях:

  • Интеграл (значения) — Интеграл (см. также Первообразная, Численное интегрирование, Интегрирование по частям) математический оператор: Определённый интеграл Неопределённый интеграл различные определения интегралов: Интеграл расширение понятия суммы Интеграл Ито… …   Википедия

  • ПУАССОНА ИНТЕГРАЛ — интегральное представление решения Дирихле задачи для Лапласа уравнения в простейших областях. Так, П. и. для шара Bn (0, R).евклидова пространства , радиуса Rс центром в начале координат имеет вид (1) где f(у) данная непрерывная функция на сфере …   Математическая энциклопедия

  • ПУАССОНА СКОБКИ — важное понятие аналитич. механики, введённое С. Пуассоном (S. Poisson) в 1809 и получившее дальнейшее развитие в гамильтоновой механике (см. Гамильтонов формализм). П. с. могут быть обобщены на случай квантовой механики, а также классич. и… …   Физическая энциклопедия

  • ПУАССОНА УРАВНЕНИЕ — дифференциальное уравнение д2u/дx2+д2u/дy2+д2u/дz2= 4pr(x, y, z) одно из осн. ур ний теории потенциала. Так, П. у. определяет потенциал и в точке с координатами х, у, z в электростатич. поле, создаваемом электрич. зарядами с объёмной плотностью… …   Физическая энциклопедия

  • Пуассона интеграл —         1) интеграл вида                  где r и φ полярные координаты, θ параметр, меняющийся на отрезке [0; 2π]; П. и. выражает значения функции u (r, φ), гармонической внутри круга радиуса R, через её значения f (θ), заданные на границе этого …   Большая советская энциклопедия

  • Интеграл движения — В механике любая функция называется интегралом движения, где q  обобщённые координаты,   обобщённые скорости системы. Интегралы движения, обладающие аддитивностью или асимптотической аддитивностью, называются законами сохранения. Содержание 1… …   Википедия

  • ПУАССОНА ФОРМУЛА — 1) То же, что Пуассона интеграл.2) Формула, дающая интегральное представление решения задачи Коши для волнового уравнения в пространстве : и имеющая вид (1) где среднее значение функции j на сфере Sat в пространстве ( х, у, z) радиуса at с… …   Математическая энциклопедия

  • Гауссов интеграл — Не следует путать с интегралом Пуассона, выражающим гармоническую функцию внутри шара (круга) через ее значения на его границе. Гауссов интеграл (также интеграл Эйлера  Пуассона или интеграл Пуассона[1])  интеграл от гауссовой функции:… …   Википедия

  • АБЕЛЯ-ПУАССОНА МЕТОД СУММИРОВАНИЯ — один из методов суммирования рядов Фурье. Ряд Фурье функции суммируется методом Абеля Пуассона в точке j к числу 5, если Если то интеграл в правой части есть гармонич. функция для и, как показал С. Пуассон (S. Poisson), является решением задачи… …   Математическая энциклопедия

  • СИНГУЛЯРНЫЙ ИНТЕГРАЛ — интеграл с особенностью в точке х, определенный для интегрируемой на [a, b]функции f(x), ядро к рого Ф n(t, х).удовлетворяет условиям: для любого d>0 и произвольного интервала и причем Ф x(d) зависит только от d и хи не зависит от п. Если… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»