История математики в России


История математики в России
Данная статья — часть обзора История математики.

Содержание

Древность и средневековье

Судя по структуре русских числительных, счёт в России издавна вёлся десятками и сотнями: три+на+дцать, шесть+десят, четыре+ста. Вместе с кириллицей появился и греческий обычай обозначать цифры помеченными специальным значком буквами; использовались буквы, аналогичные греческим, а специфически-славянские (Б, Ж, Ш и др.) числовых значений не получили. Исключение было сделано для букв Ч и Ц, перенявших числовые значения архаичных греческих букв коппа и сампи. См. Кириллическая система счисления. Числа записывались, как в римско-греческой системе, аддитивно, например, МГ обозначало 40+3. Для больших чисел (начиная с 1000) использовались особые пометки[1]. Некоторые круглые большие числа имели специальные названия:

Для ещё бо́льших чисел была предусмотрена особая система записи «великий счёт». Славянская нумерация использовалась в России до XVIII века, после чего всюду, за исключением церковной литературы, была заменена на современную.

Впервые в русской литературе математические сведения появляются в юридическом сборнике «Русская правда» (XI век), где приведен ряд расчётных примеров (долги, штрафы, проценты и т. п.).[1]

В 1136 году новгородский монах Кирик написал математико-астрономическое сочинение с подробным расчётом даты сотворения мира. Полное наименование его сочинения таково: «Кирика диакона и доместика Новгородскаго Антониева монастыря учение им-же ведати человеку числа всех лет». Помимо хронологических расчётов, Кирик привёл пример геометрической прогрессии, возникающей от деления суток на всё более мелкие доли; на одной миллионной Кирик остановился, заявив, что «более сего не бывает»[2].

После монгольского нашествия (XIII век) научное развитие России затормозилось. Конфликты с католическими соседями вызвали изоляцию русских княжеств от западной культуры, а связь с единоверной Византией была затруднена. Грамотность даже среди духовенства, где она требовалась по уставу, была удручающе низкой. Все научные книги, изданные на Западе (где как раз с XII века началось научный подъём), были запрещены. Сохранилось поучение тех лет, гласящее: «Богомерзостен перед Богом всякий, кто любит геометрию; а се душевные грехи учиться астрономии и эллинским книгам; по своему разуму верующий легко впадает в различные заблуждения»[3].

Единственной задачей, выходящей за рамки хозяйственных потребностей, был расчёт даты православной Пасхи, требующий незаурядных познаний в астрономии и математике. В XV веке пришлось решать сложную церковно-государственную проблему: ранее составленные в 1352 году (при Василии Калике, архиепископе Новгородском) пасхальные таблицы на 13601492 годы заканчивались, и во всей Руси не нашлось человека, способного произвести нужные расчеты, а Византии более не существовало. Пришлось организовать специальную делегацию, возглавленную образованным новгородским архиепископом Геннадием Гонзовым, которая отправилась в Рим за консультациями. Вояж закончился успешно, делегаты привезли таблицы пасхалий на 70 лет вперед и методику её составления[4]. Позже, в 1539 году, при архиепископе Новгородском Макарии, была составлена пасхалия на следующую тысячу лет.

XVII век

Пособие по геометрии, первая половина XVII века. Перевод c английского.
Пособие по арифметике, вторая половина XVII века.

В XVI—XVII веках государство укрепилось, и положение стало меняться. Потребности экономики и армии, особенно артиллерии, настоятельно требовали повысить уровень образования, в том числе математического. В Москве стали селиться приглашённые иностранные специалисты, были переведены на русский популярные западные руководства по прикладным наукам и математике — в первую очередь арифметике и геометрии. Одним из первых учебников геометрии на русском языке является рукопись начала XVII века «Синодальная №42», составленная в 1625 году Елизарьевым и хранящаяся в Государственном историческом музее[5]. Правда, не всегда эти руководства были надлежащего качества. Чудом уцелевший «Устав ратных дел» начала XVII века содержит несколько задач триангуляции на местности, изложенных довольно смутно. Другое дошедшее до нас с тех времён руководство, «Книга сошного письма», посвящена задачам землемерия. Многие приведенные в ней правила вычисления площадей содержат грубые ошибки. Например. чтобы вычислить площадь треугольника, предписывается умножить половину меньшей стороны на бо́льшую; вероятно, треугольник считался прямоугольным, а бо́льшая сторона подразумевала больший из катетов. При вычислении объёма цилиндра предполагалось, что \pi=3[6].

К этому периоду в некоторых областях математики уже сложилась русская терминология: считание (сложение), вычитание, перечни (слагаемые) и др. Недостающие термины заменяются кальками с латинского (радикс — корень). Славянская нумерация начинает вытесняться десятичной записью с индо-арабскими цифрами.

Первая высшая школа — духовная академия — открылась в Киеве (тогда ещё польском) в начале XVII века. Спустя полвека и в Москве появилась Славяно-греко-латинская академия (1687). В ней учились Л. Ф. Магницкий, М. В. Ломоносов и другие научные пионеры России. Впрочем, математику в Москве поначалу не преподавали, а в Киеве ограничивались начальными сведениями. Проживавший в Москве Юрий Крижанич писал в своей книге «Разговоры о владетельстве»: «Купцы не учатся даже арифметике, и иноземцы во всякое время беспощадно их обманывают»[7]..

Ко времени петровских реформ Россия располагала рукописными учебниками арифметики, излагавшими чаще всего технику вычислений на русских счётах. В отличие от аналогов, русские счёты были ориентированы на десятичную арифметику (в китайском суаньпань ещё были заметны следы старинного счёта пятёрками)[8]. Конструкция счётов менялась с изменением налоговой системы, современный вид они приняли в XVII веке. После неудачного наполеоновского похода русские счёты попали во Францию, где под именем буйе получили распространение как очень полезное школьное пособие для обучения арифметике[9].

Петровские реформы, XVIII век

С началом книгопечатания в России стали выпускаться и математические сочинения. Первое из них было отпечатано в 1682 году в Москве и называлось «Считание удобное, которым всякий человек купующий или продающий, зело удобно изыскати может, число всякие вещи». Это, собственно, сборник таблиц умножения, до 100 \times 100. В ней употребляется ещё славянские цифры[10]. Второе издание (1714, Петербург) напечатано уже гражданским шрифтом и индийскими (арабскими) цифрами. Знаменательно, что первое издание спросу почти не имело, а второе разошлось заметным для того времени тиражом более 700 экземпляров[11].

Титульный и первый листы «Арифметики» Магницкого

В 1701 году императорским указом была учреждена в Сухаревой башне математически-навигацкая школа, где преподавал Л. Ф. Магницкий. По поручению Петра I он написал (на церковно-славянском) известный учебник арифметики (1703), а позже издавал навигационные и логарифмические таблицы. В отличие от вышеописанных предшественников, учебник Магницкого для того времени был исключительно добротным и содержательным. Автор тщательно отобрал всё лучшее, что было в существовавших тогда учебниках, и изложил материал ясно, с многочисленными примерами и пояснениями, с красочными иллюстрациями. Несколько поколений в России обучались математике по этой книге; М. В. Ломоносов цитировал её наизусть и называл «вратами учёности»[12].

Кроме собственно арифметики, учебник Магницкого содержал материал по алгебре (почему-то в устаревшей символике Виета), геометрии, тригонометрии, метеорологии, астрономии и навигации. Впервые на русском языке появились квадратные и биквадратные уравнения, прогрессии, тригонометрические функции и многое другое. Хотя в книге использовались только арабские цифры, однако её листы пронумерованы ещё по старой славянской системе.

В 1715 году навигацкая школа была переименована в Морскую академию и переведена в Петербург. Одновременно Пётр распорядился разослать в губернии по два выпускника этой школы, освоивших геометрию и географию, с целью создать там школы «для науки молодых ребяток из всяких чинов людей». Эти школы получили название цифирных, так как особое внимание в них уделяли счёту, а также геометрии. Любопытно, что зачастую простые горожане охотнее отдавали детей в обучение, чем дворяне. Для духовенства, по традиции наследственного, были организованы отдельные епархиальные школы, а в армии — гарнизонные. Привычным стимулом обучения повсюду была розга[13]. Все эти меры привели к тому, что число образованных людей в России стало быстро расти.

Высшая математика поначалу не вызвала в России интереса, даже Ломоносов ею не владел. Но положение вскоре изменилось и здесь. В 1725 году была учреждена Петербургская академия наук, куда пригласили, в числе прочих, крупнейших математиков Европы — Эйлера и Даниила Бернулли. Первое время профессоров было больше, чем студентов, и они читали лекции друг другу[14].

Присутствие в Академии такого научного колосса, как Эйлер, сказалось быстро. Появился первый русский научный журнал: «Комментарии Санкт-Петербургской Академии». Начали выходить в свет не только русские переводы европейских учебников и классических монографий, но и оригинальные труды. Эйлер вполне освоил русский язык и часть своих трудов, в первую очередь учебного характера, издавал на русском — в ряде случаев они выходили раньше, чем их варианты на латинском или немецком.

1755: по инициативе Ломоносова появился Императорский Московский университет, и при нём две гимназии. В 1760 году открылась кафедра математики, однако из-за отсутствия квалифицированных кадров лекции по высшей математике были включены в курс только в начале XIX века.

Первыми академиками-математиками России стали С. К. Котельников, В. И. Висковатов и С. Е. Гурьев. Первые двое ничем особенным не прославились, кроме составления и перевода учебников, а также неустанного труда по подготовке научной смены. Гурьев опубликовал ряд значительных работ по прикладной математике и геометрии. Хотя научный уровень этих академиков ещё не достигал «европейских стандартов», но педагогами они были добросовестными, и следующее поколение российских учёных оправдало их надежды[15].

Итогом усилий по развитию российской математики в XVIII веке можно считать написанный Т. Ф. Осиповским (1801) содержательный «Курс математики» в 4 томах, выдержавший три издания.

XIX век

Мощным толчком к развитию российской науки послужили реформы М. М. Сперанского. В начале XIX в. было создано Министерство народного просвещения, возникли учебные округа, и гимназии стали открываться во всех крупных городах России. При этом содержание курса математики было довольно обширным — алгебра, тригонометрия, приложения к физике и др.

Начали открываться новые университеты — в Казани и Харькове (1804), в Петербурге (1819), в Киеве (1834). Все они в обязательном порядке имели физико-математический факультет.

В XIX веке молодая российская математика уже выдвинула учёных мирового уровня.

Первым из них стал Михаил Васильевич Остроградский, академик пяти европейских академий. Как и большинство российских математиков до него, он разрабатывал преимущественно прикладные задачи анализа. В его работах исследуется распространение тепла, волновое уравнение, теория упругости, электромагнетизм. Занимался также теорией чисел. Важные прикладные работы выполнил Виктор Яковлевич Буняковский — чрезвычайно разносторонний математик, изобретатель, признанный авторитет по теории чисел и теории вероятностей, автор фундаментального труда «Основания математической теории вероятностей», основоположник российской демографии. Эти два математика дали начало «Петербургской математической школе», первое время занимавшейся в основном тремя областями — теорией чисел, математической физикой и теорией вероятностей[16].

Н. И. Лобачевский

Фундаментальными вопросами математики в России первой половины XIX века занялся только Николай Иванович Лобачевский, который выступил против догмата евклидовости пространства. Он построил геометрию Лобачевского и глубоко исследовал её необычные свойства. Лобачевский настолько опередил своё время, что был оценён по заслугам только спустя много лет после смерти.

Во второй половине XIX века российская математика, при общем прикладном уклоне, публикует и немало фундаментальных результатов. Несколько важных открытий общего характера сделала Софья Ковалевская.

Пафнутий Львович Чебышев

К концу XIX века, стараниями Н. Д. Брашмана и Н. В. Бугаева, формируется активная московская математическая школа. 15 сентября 1864 года начало свою работу Московское математическое общество, в следующем году вышел первый выпуск его печатного органа «Математический сборник» — первый математический журнал в России.

В Москве начинал свой путь Пафнутий Львович Чебышев, математик-универсал, который сделал множество открытий в самых разных, далёких друг от друга, областях математики — теории чисел, теории вероятностей, теории приближения функций и др. Ряд его учеников стали известными математиками; из них особенно известен А. А. Марков, давший первоклассные работы по теории вероятностей, теории чисел и математическому анализу.

В Петербурге в конце XIX — начале XX века выходит на историческую сцену новое поколение крупных математиков:

и другие.

Перед Октябрьской революцией математическая жизнь в Российской империи протекала чрезвычайно активно. Петербургская школа получила выдающиеся результаты в теории вероятностей (А. А. Марков, А. М. Ляпунов), теории устойчивости (А. М. Ляпунов), теории чисел (И. И. Иванов, Я. В. Успенский), математической физике (В. А. Стеклов, Н. М. Гюнтер), теории аналитических функций (Н. Я. Сонин, Ю. В. Сохоцкий) и других областях теоретической и прикладной математики. В Москве крупными достижениями прославились Д. Ф. Егоров, Н. Н. Лузин, С. А. Чаплыгин. Число математических обществ в стране увеличилось до 5.

Советский период

Модернизация страны, проводимая после Октябрьской революции, сопровождалась значительным расширением преподавания математики и исследований в этой области. В России появились новые университеты (Воронеж, Горький, Пермь, Свердловск, Ростов, Иркутск) и множество других научных и учебных заведений, разрабатывающих математические проблемы. Кадровый вопрос частично был решён за счёт дореволюционных специалистов, однако их не хватало, тем более что немало крупных математиков эмигрировало за границу: А. М. Островский, А. С. Безикович, позже Я. Д. Тамаркин и Я. В. Успенский[17]. Поэтому ускоренными темпами было подготовлено новое поколение российских математиков.

При Московском, Ленинградском, Казанском и Томском университетах были открыты Математические институты. С 1924 года советские математики участвовали в работе Международного конгресса математиков, их работы были удостоены нескольких высших наград в ходе этих конгрессов. В 1927 году в Москве состоялся Всероссийский (фактически — всесоюзный) съезд математиков, в котором участвовали 378 делегатов со всех концов страны. В 1930 году, с 24 по 29 июня, в Харькове прошёл I Всесоюзный съезд математиков (471 представитель)[18]. Следующие съезды состоялись в 1934 году (Ленинград), 1956 (Москва), 1961 (Ленинград). В 1936 году начался выпуск журнала «Успехи математических наук».

В 1930-е годы советская математическая школа окончательно оформилась и вскоре стала одной из ведущих в мире[19]. Больших успехов достигли советские математики как в традиционных, так и в новых областях математики — топология, теория меры, теория множеств и др.

Среди выдающихся математиков советского периода:

Ряд математиков в советское время подверглись политическим гонениям[20]. Среди них: Д. Ф. Егоров, Н. Н. Лузин, Н. С. Кошляков, И. М. Яглом, Р. И. Пименов, И. Р. Шафаревич и другие. В 1968 году 99 математиков, включая многих видных учёных, подписали письмо в защиту А. С. Есенина-Вольпина, что вызвало новые репрессии[21].

Постсоветский период

Среди крупных российских математиков конца XX — начала XXI века:

Примечания

  1. 1 2 История математики, 1970-1972, том I, стр. 252
  2. Кирик Новгородец. Учение имже ведати человеку числа всех лет. Перевод В. П. Зубова и Т. А. Коншиной. Примечания и статья В. П. Зубова.— ИМИ, 1953, № 6, стр. 174—195.
  3. Гнеденко Б. В., 2005, с. 21-22
  4. Гнеденко Б. В., 2005, с. 14
  5. Белый Ю.А., Швецов К.И. Об одной русской геометрической рукописи первой четверти XVII в // Историко-математические исследования. — М.: Государственное издательство физико-математической литературы, 1959. — В. 12.
  6. Гнеденко Б. В., 2005, с. 25-32.
  7. Гнеденко Б. В., 2005, с. 49
  8. История математики, 1970-1972, том II, стр. 63-65.
  9. Депман И. Я., 1965, с. 85.
  10. Депман И. Я., 1965, с. 95.
  11. Депман И. Я., 1965, с. 193.
  12. Гнеденко Б. В., 2005, с. 54
  13. Гнеденко Б. В., 2005, с. 51-52
  14. Гнеденко Б. В., 2005, с. 71
  15. Гнеденко Б. В., 2005, с. 83
  16. Гнеденко Б. В., 2005, с. 100-103
  17. См. об этом: Ермолаева Н. С. Русская математика за рубежом // Природа. — М., 1994. — № 11, стр. 80-82.
  18. Токарева Т. А. Первые съезды отечественных математиков: предыстория и формирование отечественной математической школы // Историко-математические исследования. — М.: Янус-К, 2001. — № 41 (6). — С. 213-232..
  19. Демидов С. С., Токарева Т. А., 2005, с. 142
  20. Виленкин Н. Я. Формулы на фанере. «Природа», 1991, № 6—7.
  21. Новиков С. П. Математики и физики Академии 60-80-х годов // Вопросы истории естествознания и техники. 1995. № 4. С. 57.

Литература

  • История отечественной математики. Киев: Наукова думка, 1966—1970. Т. 1—4.
  • Каган В. Ф. Лобачевский. (1948)
  • Колмогоров А. Н., Юшкевич А. П. (ред.) Математика XIX века. М.: Наука.
  • Математика в СССР за сорок лет, 1917—1957. Главный редактор А. Г. Курош. М.: Физматгиз, 1959.
  • Симонов Р. А. Математическая мысль допетровской Руси. — М.: Наука, 1977.
  • Хрестоматия по истории математики / Под ред. А. П. Юшкевича.
  • Арифметика и алгебра. Теория чисел. Геометрия. М.: Просвещение, 1976, 318 с.
  • Математический анализ. Теории вероятностей. М.: Просвещение, 1977, 224 с.
  • Юшкевич, А. П. История математики в России до 1917 года. // М.: Наука, 1968, 592 с.

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "История математики в России" в других словарях:

  • История математики — История науки …   Википедия

  • История арифметики — Арифметика. Роспись Пинтуриккьо. Апартаменты Борджиа. 1492 1495. Рим, Ватиканские дворцы …   Википедия

  • История тригонометрии — Геодезические измерения (XVII век) …   Википедия

  • История криптографии — Основная статья: Криптография История криптографии насчитывает около 4 тысяч лет. В качестве основного критерия периодизации криптографии возможно использовать технологические характеристики используемых методов шифрования. Первый период… …   Википедия

  • История математических обозначений — Математические обозначения  это символы, используемые для компактной записи математических уравнений и формул[1]. Помимо цифр и букв различных алфавитов (латинского, в том числе в готическом начертании, греческого и еврейского),… …   Википедия

  • История картографии — Картография (от др. греч. χάρτης  «хартия, лист папируса» и γράφω  «пишу»), или наука об исследовании, моделировании и отображении пространственного расположения, сочетания и взаимосвязи объектов и явлений природы и общества, является… …   Википедия

  • История вычислительной техники — История науки …   Википедия

  • История науки и техники (книжная серия) — «История науки и техники»  научно популярная книжная серия издательства «Наука» (Москва), посвящённая истории отдельных отраслей естественных и точных наук с древности до наших дней, их теоретическим и прикладным аспектам, а также биографиям …   Википедия

  • История «Новой хронологии» — Основная статья: Новая хронология (Фоменко) Содержание 1 Ранние попытки ревизии хронологии 2 В России 3 Идеи Н. А. Морозова …   Википедия

  • История "Новой Хронологии" — Основная статья: Новая хронология (Фоменко) Содержание 1 Ранние попытки ревизии хронологии 2 В России 3 Идеи Н. А. Морозова …   Википедия

Книги

Другие книги по запросу «История математики в России» >>