Переполнение буфера

Переполнение буфера

Переполнение буфера (Buffer Overflow) — явление, возникающее, когда компьютерная программа записывает данные за пределами выделенного в памяти буфера.

Переполнение буфера обычно возникает из-за неправильной работы с данными, полученными извне, и памятью, при отсутствии жесткой защиты со стороны подсистемы программирования (компилятор или интерпретатор) и операционной системы. В результате переполнения могут быть испорчены данные, расположенные следом за буфером (или перед ним).

Переполнение буфера является наиболее популярным способом взлома компьютерных систем, так как большинство языков высокого уровня используют технологию стекового кадра — размещение данных в стеке процесса, смешивая данные программы с управляющими данными (в том числе адреса начала стекового кадра и адреса возврата из исполняемой функции).

Переполнение буфера может вызывать аварийное завершение или зависание программы, ведущее к отказу обслуживания (denial of service, DoS). Отдельные виды переполнений, например переполнение в стековом кадре, позволяют злоумышленнику загрузить и выполнить произвольный машинный код от имени программы и с правами учетной записи, от которой она выполняется.

Известны примеры, когда переполнение буфера намеренно используется системными программами для обхода ограничений в существующих программных или программно-аппаратных средствах. Например, операционная система iS-DOS (для компьютеров ZX Spectrum) использовала возможность переполнения буфера встроенной TR-DOS для запуска своего загрузчика в машинных кодах (что штатными средствами в TR-DOS сделать невозможно).

Содержание

Безопасность

Программа, которая использует уязвимость для разрушения защиты другой программы, называется эксплойтом. Наибольшую опасность представляют эксплойты, предназначеные для получения доступа к уровню суперпользователя или, другими словами, повышения привилегий. Эксплойт переполнения буфера достигает этого путём ввода специально изготовленных входных данных. Такие данные переполняют выделенный буфер и изменяют данные, которые следуют за этим буфером в памяти.

Представим гипотетическую программу системного администрирования, которая исполняется с привилегиями суперпользователя — к примеру, изменение паролей пользователей. Если программа не проверяет длину введённого нового пароля, то любые данные, длина которых превышает размер выделенного для их хранения буфера, будут просто записаны поверх того, что находилось после буфера. Злоумышленник может вставить в эту область памяти инструкции на машинном языке (шелл-код), выполняющие любые действия с привилегиями суперпользователя — добавление и удаление учётных записей пользователей, изменение паролей, изменение или удаление файлов и т. д. Если в дальнейшем программа передаст управление в эту область памяти, система исполнит находящийся там машинный код злоумышленника.

Правильно написанные программы должны проверять длину входных данных, чтобы убедиться, что они не больше, чем выделенный буфер данных. Однако программисты часто забывают об этом. В случае если буфер расположен в стеке и стек "растёт вниз" (например в архитектуре x86), то с помощью переполнения буфера можно изменить адрес возврата выполняемой функции, так как адрес возврата расположен после буфера, выделенного выполняемой функцией. Тем самым есть возможность выполнить произвольный участок машинного кода в адресном пространстве процесса. В случае же, если стек "растёт вверх" (в этом случае адрес возврата обычно находятся перед буфером), использовать переполнение буфера для искажения адреса возврата возможно в очень редких случаях[источник не указан 30 дней].

Даже опытным программистам бывает трудно определить, насколько то или иное переполнение буфера может быть уязвимостью. Это требует глубоких знаний об архитектуре компьютера и о целевой программе. Было показано[кем?], что даже настолько малые переполнения, как запись одного байта за пределами буфера, могут представлять собой уязвимости.

Переполнения буфера широко распространены в программах, написанных на относительно низкоуровневых языках программирования, таких как язык ассемблера, Си и C++, которые требуют от программиста самостоятельного управления размером выделяемой памяти. Устранение ошибок переполнения буфера до сих пор является слабо автоматизированным процессом. Системы формальной верификации программ не очень эффективны при современных языках программирования.

Многие языки программирования, например, Java и Lisp, управляют выделением памяти автоматически, и используют комбинацию статического анализа и проверки корректности действий программы во время выполнения. Это делает ошибки, связанные с переполнением буфера, маловероятными или невозможными. Perl для избежания переполнений буфера обеспечивает автоматическое изменение размера массивов. Однако системы времени выполнения и библиотеки для таких языков всё равно могут быть подвержены переполнениям буфера, вследствие возможных внутренних ошибок в реализации этих систем проверки. В Windows доступны некоторые программные решения, которые предотвращают выполнение кода за пределами переполненного буфера, если такое переполнение было осуществлено. Среди этих решений — DEP в Windows XP SP2, OSsurance и Anti-Execute.

Краткое техническое изложение

Описание

Рассмотрим более подробно случай переполнения буфера, расположенного в области стека. Это удобнее всего сделать с помощью примера программы на языке Си. Пример ориентирован на архитектуру x86.

Когда динамический буфер, представляющий собой автоматический массив, выделяется в функции, он создаётся на стеке во время вызова этой функции. В архитектуре x86 стек растёт от бо́льших адресов к меньшим (или справа налево, в приведённых ниже диаграммах), то есть новые данные помещаются перед теми, которые уже находятся в стеке. Здесь, (DATA) (DATA) (…) представляет существующий стек, и (NEWDATA) — это некоторое новое значение, которое ЦП поместил в стек:

(NEWDATA)(DATA)(DATA)(...)

Записывая данные в буфер, можно осуществить запись за его границами и изменить находящиеся там данные. Когда программа вызывает подпрограмму, она помещает адрес возврата в стек, так что подпрограмма знает, куда возвращать управление после того, как она завершится:

(ADDR)(DATA)(DATA)(...)

Когда выделяется динамический буфер, стек растёт влево на размер буфера. Так, если функция начинается с объявления char a[10], результатом будет:

(.a........)(ADDR)(DATA)(DATA)(...)

В конце подпрограммы память, занятая буфером, освобождается, и вызывается операция RET. Она извлекает адрес возврата из стека и выполняет переход по этому адресу, возвращая управление туда, откуда была вызвана подпрограмма.

Предположим, что 10-байтный буфер предназначен для того, чтобы содержать данные, предоставляемые пользователем (например — пароль). Если программа не проверяет количество символов, которые были введены пользователем, и записывает 14 байт в буфер, эти лишние данные будут помещены поверх адреса возврата. Таким образом, это изменит адрес, по которому будет передано управление, когда завершится подпрограмма, и с которого программа продолжит исполнение после этого.

Если пользователь не злонамерен и вводит более, чем 10 символов, добавочные данные будут скорее всего случайными. В таком случае вполне возможно, что адрес возврата будет указывать на область памяти, которая неподконтрольна текущей исполняемой программе. Это вызовет ошибку сегментации в UNIX-системах или аналогичную ошибку в других операционных системах.

Однако пользователь может подставить в качестве адреса возврата и некий правильный адрес. Это вызовет переход управления в любую точку программы по его выбору. В результате потенциально может быть выполнен любой произвольный код, который этот пользователь поместил в данную область памяти, с теми привилегиями, с которыми выполняется текущая программа.

Пример

Рассмотрим следующую программу на языке Си. Скомпилировав эту программу, мы сможем использовать её для генерации ошибок переполнения буфера. Первый аргумент командной строки программа принимает как текст, которым заполняется буфер.

 /* overflow.c - демонстрирует процесс переполнения буфера */
 
 #include <stdio.h>
 #include <string.h>
 
 int main(int argc, char *argv[])
 {
   char buffer[10];
   if (argc < 2)
   {
     fprintf(stderr, "ИСПОЛЬЗОВАНИЕ: %s строка\n", argv[0]);
     return 1;
   }
   strcpy(buffer, argv[1]);
   return 0;
 }

Программу можно опробовать с несколькими разными строками. Строки размером в 9 или меньше символов не будут вызывать переполнение буфера. Строки в 10 и более символов будут вызывать переполнение, хотя это может и не приводить к ошибке сегментации.

Эта программа может быть переписана следующим образом, с использованием функции Strncpy для предотвращения переполнения. Однако, следует учитывать, что простое отбрасывание лишних данных, как в этом примере, также может приводить к нежелательным последствиям, в том числе, при определённых условиях, к повышению привилегий. Как правило, требуется более тщательная обработка таких ситуаций.

 /* better.c - демонстрирует, как исправить ошибку */
 
 #include <stdio.h>
 #include <string.h>
 #define BUFFER_SIZE 10
 
 int main(int argc, char *argv[])
 {
   char buffer[BUFFER_SIZE];
   if (argc < 2)
   {
     fprintf(stderr, "ИСПОЛЬЗОВАНИЕ: %s строка\n", argv[0]);
     return 1;
   }
   strncpy(buffer, argv[1], BUFFER_SIZE);
   return 0;
 }

Предотвращение

Для того, чтобы сделать переполнение буфера менее вероятным, используются различные приёмы.

Системы обнаружения вторжения

С помощью систем обнаружения вторжения (СОВ) можно обнаружить и предотвратить попытки удалённого использования переполнения буфера. Так как в большинстве случаев данные, предназначенные для переполнения буфера, содержат длинные массивы инструкций No Operation (NOP или NOOP), СОВ просто блокирует все входящие пакеты, содержащие большое количество последовательных NOP-ов. Этот способ, в общем, неэффективен, так как такие массивы могут быть записаны с использованием разнообразных инструкций языка ассемблера. В последнее время крэкеры начали использовать шелл-коды с шифрованием, самомодифицирующимся кодом, полиморфным кодом и алфавитно-цифровым кодом, а также атаки возврата в стандартную библиотеку для проникновения через СОВ.

Защита от повреждения стека

Защита от повреждения стека используется для обнаружения наиболее частых ошибок переполнения буфера. При этом проверяется, что стек вызовов не был изменён перед возвратом из функции. Если он был изменён, то программа заканчивает выполнение с ошибкой сегментации.

Существуют две системы: StackGuard и Stack-Smashing Protector (старое название — ProPolice), обе являются расширениями компилятора gcc. Начиная с gcc-4.1-stage2, SSP был интегрирован в основной дистрибутив компилятора. Gentoo Linux и OpenBSD включают SSP в состав распространяемого с ними gcc.

Размещение адреса возврата в стеке данных облегчает задачу осуществления переполнения буфера, которое ведёт к выполнению произвольного кода. Теоретически, в gcc могут быть внесены изменения, которые позволят помещать адрес в специальном стеке возврата, который полностью отделён от стека данных, аналогично тому, как это реализовано в языке Forth. Однако это не является полным решением проблемы переполнения буфера, так как другие данные стека тоже нуждаются в защите.

Защита пространства исполняемого кода для UNIX-подобных систем

Защита пространства исполняемого кода может смягчить последствия переполнений буфера, делая большинство действий злоумышленников невозможными. Это достигается рандомизацией адресного пространства (ASLR) и/или запрещением одновременного доступа к памяти на запись и исполнение. Неисполняемый стек предотвращает большинство эксплойтов кода оболочки.

Существует два исправления для ядра Linux, которые обеспечивают эту защиту — PaX и exec-shield. Ни один из них ещё не включен в основную поставку ядра. OpenBSD с версии 3.3 включает систему, называемую W^X, которая также обеспечивает контроль исполняемого пространства.

Заметим, что этот способ защиты не предотвращает повреждение стека. Однако он часто предотвращает успешное выполнение «полезной нагрузки» эксплойта. Программа не будет способна вставить код оболочки в защищённую от записи память, такую как существующие сегменты исполняемого кода. Также будет невозможно выполнение инструкций в неисполняемой памяти, такой как стек или куча.

ASLR затрудняет для взломщика определение адресов функций в коде программы, с помощью которых он мог бы осуществить успешную атаку, и делает атаки типа ret2libc очень трудной задачей, хотя они всё ещё возможны в контролируемом окружении, или если атакующий правильно угадает нужный адрес.

Некоторые процессоры, такие как Sparc фирмы Sun, Efficeon фирмы Transmeta, и новейшие 64-битные процессоры фирм AMD и Intel предотвращают выполнение кода, расположенного в областях памяти, помеченных специальным битом NX. AMD называет своё решение NX (от англ. No eXecute), а Intel своё — XD (от англ. eXecute Disabled).

Защита пространства исполняемого кода для Windows

Сейчас существует несколько различных решений, предназначенных для защиты исполняемого кода в системах Windows, предлагаемых как компанией Майкрософт, так и сторонними компаниями.

Майкрософт предложила своё решение, получившее название DEP (от англ. Data Execution Prevention — «предотвращение выполнения данных»), включив его в пакеты обновлений для Windows XP и Windows Server 2003. DEP использует дополнительные возможности новых процессоров Intel и AMD, которые были предназначены для преодоления ограничения в 4 ГиБ на размер адресуемой памяти, присущий 32-разрядным процессорам. Для этих целей некоторые служебные структуры были увеличены. Эти структуры теперь содержат неиспользуемый (зарезервированный) бит NX. DEP использует этот бит для предотвращения атак, связанных с изменением адреса обработчика исключений (так называемый SEH-эксплойт). DEP обеспечивает только защиту от SEH-эксплойта, он не защищает страницы памяти с исполняемым кодом.

Кроме того, Майкрософт разработала механизм защиты стека, предназначенный для Windows Server 2003. Стек помечается с помощью так называемых «осведомителей» (англ. canary), целостность которых затем проверяется. Если «осведомитель» был изменён, значит, стек повреждён.

Существуют также сторонние решения, предотвращающие исполнение кода, расположенного в областях памяти, предназначенных для данных или реализующих механизм ASLR.

Использование безопасных библиотек

Проблема переполнений буфера характерна для языков программирования Си и C++, потому что они не скрывают детали низкоуровневого представления буферов как контейнеров для типов данных. Таким образом, чтобы избежать переполнения буфера, нужно обеспечивать высокий уровень контроля за созданием и изменениями программного кода, осуществляющего управление буферами. Использование библиотек абстрактных типов данных, которые производят централизованное автоматическое управление буферами и включают в себя проверку на переполнение — один из инженерных подходов к предотвращению переполнения буфера.

Два основных типа данных, которые позволяют осуществить переполнение буфера в этих языках — это строки и массивы. Таким образом, использование библиотек для строк и списковых структур данных, которые были разработаны для предотвращения и/или обнаружения переполнений буфера, позволяет избежать многих уязвимостей.

См. также

Ссылки

Библиотеки и другие средства защиты


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Переполнение буфера" в других словарях:

  • переполнение буфера — переполнение происходит, когда в буфер поступает избыточное количество новых данных. Причин может быть две: буфер недостаточно велик, чтобы вместить все данные, которые необходимо, до начала обработки этих данных; либо несоответствие между… …   Hacker's dictionary

  • переполнение буфера — Ситуация, возникающая при перегрузке сети, когда скорость входного потока данных, записываемых в буферную память, превышает скорость освобождения ячеек ЗУ. В результате входное устройство не успевает обрабатывать данные в темпе их поступления и… …   Справочник технического переводчика

  • Переполнение — Переполнение: Арифметическое переполнение Переполнение буфера …   Википедия

  • Переполнение стека — Эта статья  о компьютерной ошибке. О сайте для программистов см. Stack Overflow. В программном обеспечении переполнение стека (англ. stack overflow) возникает, когда в стеке вызовов хранится больше информации, чем он… …   Википедия

  • buffer overflow — переполнение буфера переполнение происходит, когда в буфер поступает избыточное количество новых данных. Причин может быть две: буфер недостаточно велик, чтобы вместить все данные, которые необходимо, до начала обработки этих данных; либо… …   Hacker's dictionary

  • Стековый кадр — (англ. stack frame) механизм передачи аргументов и выделения временной памяти (в процедурах языков программирования высокого уровня) с использованием системного стека. Содержание 1 Технология 1.1 Передача аргументов …   Википедия

  • Printf — printf  обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода  вывода в различные потоки …   Википедия

  • Snprintf — printf обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода вывода в различные потоки значений… …   Википедия

  • Sprintf — printf обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода вывода в различные потоки значений… …   Википедия

  • Swprintf — printf обобщённое название семейства функций или методов стандартных или широкоизвестных коммерческих библиотек, или встроенных операторов некоторых языков программирования, используемых для форматного вывода вывода в различные потоки значений… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»