- Донгл
-
Электронный ключ (также аппаратный ключ, иногда донгл от англ. dongle) — аппаратное средство, предназначенное для защиты программного обеспечения (ПО) и данных от копирования, нелегального использования и несанкционированного распространения.
Основой данной технологии является специализированная , либо специализированный защищённый микроконтроллер, имеющие уникальные для каждого ключа алгоритмы работы. Донглы также имеют защищённую энергонезависимую память небольшого объёма, более сложные устройства могут иметь встроенный криптопроцессор (для аппаратной реализации шифрующих алгоритмов), часы реального времени. Аппаратные ключи могут иметь различные форм-факторы, но чаще всего они подключаются к компьютеру через LPT- или интерфейсу компьютера. Далее защищённая программа через специальный драйвер отправляет ему информацию, которая обрабатывается в соответствии с заданным алгоритмом и возвращается обратно. Если ответ ключа правильный, то программа продолжает свою работу. В противном случае она может выполнять любые действия, заданные разработчиками — например, переключаться в демонстрационный режим, блокируя доступ к определённым функциям.
Для обеспечения безопасности сетевого ПО служат специальные электронные ключи. Для защиты и лицензирования (ограничения числа работающих в сети копий программы) сетевого продукта достаточно одного ключа на всю локальную сеть. Ключ устанавливается на любой рабочей станции или сервере сети.
Многие компании, работающие в области защиты информации, предлагают свой взгляд на то, каким должен быть электронный ключ. На российском рынке наиболее известны следующие линейки продуктов (в алфавитном порядке): Guardant от компании «Актив», SenseLock от Seculab, Sentinel от SafeNet и др.
Содержание
История
Защита ПО от нелицензионного пользования увеличивает прибыль разработчика. На сегодняшний день существует несколько подходов к решению этой проблемы. Подавляющее большинство создателей ПО используют различные программные модули, контролирующие доступ пользователей с помощью ключей активации, серийных номеров и т. д. Такая защита является дешёвым решением и не может претендовать на надёжность. Интернет изобилует программами, позволяющими нелегально сгенерировать ключ активации (генераторы ключей) или заблокировать запрос на серийный номер/ключ активации (патчи, крэки). Кроме того, не стоит пренебрегать тем фактом, что сам легальный пользователь может обнародовать свой серийный номер.
Эти очевидные недостатки привели к созданию аппаратной защиты программного обеспечения в виде электронного ключа. Известно, что первые электронные ключи (то есть аппаратные устройства для защиты ПО от нелегального копирования) появились в начале 1980ых годов, однако первенство в идее и непосредственном создании устройства по понятным причинам установить очень сложно. По одной из версий идея заставить программу определенным образом опрашивать аппаратный блок и работать только в его присутствии родилась в голове инженера Дэна Максвелла ещё в начале 70ых годов, а в 1982 году созданная Дэном компания начала выпуск ключа SecuriKey для IBM PC (ключ подключался к компьютеру через параллельный порт). По другой версии первый в мире электронный ключ, получивший название, разработала немецкая компания FAST Electronic (впоследствии FAST Electronic была куплена компанией Aladdin, тоже претендующей на первенство в этой области со своими аппаратными ключами HASP). Так или иначе, первые электронные ключи были далеки от совершенства и сильно изменились с того времени.
Защита ПО с помощью электронного ключа
Комплект разработчика ПО
Донгл относят к аппаратным методам защиты ПО, однако современные электронные ключи часто определяются как мультиплатформенные аппаратно-программные инструментальные системы для защиты ПО. Дело в том, что помимо самого ключа компании, выпускающие электронные ключи, предоставляют SDK входит все необходимое для начала использования представляемой технологии в собственных программных продуктах — средства разработки, полная техническая документация, поддержка различных операционных систем, детальные примеры, фрагменты кода. Также SDK может включать в себя демонстрационные ключи для построения тестовых проектов.
Технология защиты
Технология защиты от несанкционированного использования ПО построена на реализации запросов из исполняемого файла или к ключу с последующим получением ответа (и, если предусмотрено, анализом этого ответа). Вот некоторые характерные запросы:
- проверка наличия подключения ключа;
- считывание с ключа необходимых программе данных в качестве параметра запуска;
- запрос на расшифрование данных или исполняемого кода, необходимых для работы программы (предварительно разработчик защиты шифрует часть кода программы и, понятно, непосредственное выполнение такого зашифрованного кода приводит к ошибке);
- проверка целостности исполняемого кода путём сравнения его текущей контрольной суммы с оригинальной контрольной суммой, считываемой с ключа;
- запрос к встроенным в ключ часам реального времени (при их наличии) и т. д.
Стоит отметить, что некоторые современные ключи (ключи Senselock от Seculab, Rockey6 Smart от Feitian) позволяют разработчику хранить отдельные части кода приложения (например, недетерминированные специфические алгоритмы разработчика, получающие на вход большое число параметров) и исполнять их в самом ключе на его собственном микропроцессоре. Помимо защиты ПО от нелегального использования такой подход позволяет защитить используемый в программе алгоритм от изучения и клонирования конкурентами.
Как следует из вышесказанного, «сердцем» электронного ключа является шифрующий алгоритм. Тенденция состоит в том, чтобы реализовывать его аппаратно — это затрудняет создание полного эмулятора ключа, так как ключ шифрования никогда не передается на выход донгла, что исключает возможность его перехвата.
Алгоритм шифрования может быть секретным или публичным. Секретные алгоритмы разрабатываются самим производителем средств защиты, в том числе и индивидуально для каждого заказчика. Главным недостатком использования таких алгоритмов является невозможность оценки криптографической стойкости. С уверенностью сказать, насколько надёжен алгоритм, можно было лишь постфактум: взломали или нет. Публичный алгоритм, или «открытый исходник», обладает криптостойкостью несравнимо большей. Такие алгоритмы проверяются не случайными людьми, а рядом экспертов, специализирующихся на анализе криптографии. Примерами таких алгоритмов могут служить широко используемые ГОСТ 28147—89, RSA, Elgamal и др.
Реализация защиты с помощью автоматических средств
Для большинства семейств аппаратных ключей разработаны автоматические инструменты (входящие в лицензионной политики (заданной поставщиком ПО), внедряет механизм защиты исполняемого файла от отладки и декомпиляции (например, сжатие исполняемого файла) и др.
Важно то, что для использования автоматического инструмента защиты не требуется доступ к исходному коду приложения. Например, при локализации зарубежных продуктов (когда отсутствует возможность вмешательства в исходный код ПО) такой механизм защиты незаменим, однако он не позволяет реализовать надёжную, гибкую и индивидуальную защиту.
Реализация защиты с помощью функций API
Помимо использования автоматической защиты, разработчику ПО предоставляется возможность самостоятельно разработать защиту, интегрируя систему защиты в приложения на уровне исходного кода. Для этого в SDK включены языков программирования, содержащие описание функциональности API для данного ключа. API представляет собой набор функций, предназначенных для обмена данными между приложением, системным драйвером (и сервером в случае сетевых ключей) и самим ключом. Функции API обеспечивают выполнение различных операций с ключом: поиска, чтения и записи памяти, шифрования и расшифрования данных при помощи аппаратных алгоритмов, лицензирования сетевого ПО и т. д.
Умелое применение данного метода обеспечивает достаточно высокий уровень защищённости приложений. Нейтрализовать защиту, встроенную в приложение, достаточно трудно вследствие её «размытости» в теле программы.
Обход защиты
Задача злоумышленника — заставить защищённую программу работать в условиях отсутствия легального ключа, подсоединённого к компьютеру. Не вдаваясь очень глубоко в технические подробности, будем исходить из предположения, что у злоумышленника есть следующие возможности:
- Перехватывать все обращения к ключу;
- Протоколировать и анализировать эти обращения;
- Посылать запросы к ключу и получать на них ответы;
- Протоколировать и анализировать эти ответы;
- Посылать ответы от имени ключа и др.
Такие широкие возможности противника можно объяснить тем, что он имеет доступ ко всем открытым интерфейсам, документации, драйверам и может их анализировать на практике с привлечением любых средств.
Для того чтобы заставить программу работать так, как она работала бы с ключом, можно или внести исправления в программу (взломать её программный модуль), или эмулировать наличие ключа.
Эмуляция ключа
При эмуляции никакого воздействия на код программы не происходит, и эмулятор, если его удается построить, просто повторяет все поведение реального ключа. Эмуляторы строятся на основе анализа перехваченных запросов приложения и ответов ключа на них. Они могут быть как табличными (содержать в себе все необходимые для работы программы ответы на запросы к электронному ключу), так и полными (полностью эмулируют работу ключа, так как взломщикам стал известен внутренний алгоритм работы).
Построить полный эмулятор современного электронного ключа — это достаточно трудоемкий процесс, требующий большого количества времени и существенных инвестиций. Ранее злоумышленникам это удавалось: например, компания Aladdin признаёт, что в 1999 году злоумышленникам удалось разработать довольно корректно работающий эмулятор ключа HASP3. Это стало возможным благодаря тому, что алгоритмы кодирования были реализованы программно. Аппаратная реализация кодирования существенно усложнила задачу, поэтому злоумышленники предпочитают атаковать какой-то конкретный защищенный продукт, а не защитный механизм в общем виде. Тем не менее взлому были подвержены и ключи серии HASP4. И по сей день в природе имеются эмуляторы для HASP HL (HASP 5), но не в так называемом «паблике» (публичном доступе).
Взлом программного модуля
Злоумышленник исследует логику самой программы, с той целью, чтобы, проанализировав весь код приложения, выделить блок защиты и деактивировать его. Взлом программ осуществляется с помощью отладки (или пошаговое исполнение), декомпиляции и дампа оперативной памяти. Эти способы анализа исполняемого кода программы чаще всего используются злоумышленниками в комплексе.
Отладка осуществляется с помощью специального ПО — отладчика, который позволяет по шагам исполнять любое приложение, эмулируя для него операционную среду. Важной функцией отладчика является способность устанавливать точки или условия остановки исполнения кода. С помощью них злоумышленнику проще отслеживать места в коде, которые реализуют обращение к ключу (например, остановка выполнения на сообщении типа «Ключ отсутствует! Проверьте наличие ключа в USB-интерфейсе»).
Дизассемблирование — это способ преобразования исполняемых модулей в язык программирования, понятный человеку — Assembler. В этом случае злоумышленник получает распечатку (листинг) того, что делает приложение.
Суть атаки с помощью дапма памяти заключается в следующем. Специальные программы (дамперы) считывают содержимое оперативной памяти на тот момент, когда приложение начало нормально исполняться, и злоумышленник получает рабочий код (или интересующую его часть) в чистом виде. Главное для злоумышленника — верно выбрать этот момент. К примеру, часть кода появляется в оперативной памяти в открытом виде только на время своего исполнения, обратно зашифровываясь по завершению.
Отметим, что существует немало способов противодействия отладке, и разработчики защиты используют их: нелинейность кода (многопоточность), «замусоривание» кода, по сути, бесполезными функциями, выполняющими сложные операции, с целью запутать злоумышленника, использование несовершенства самих отладчиков и др.
Литература
- Скляров, Д. В. Аппаратные ключи защиты // Искусство защиты и взлома информации. — СПб.: БХВ-Петербург, 2004. — С. 132-141. — 3000 экз. — ISBN 5-94157-331-6
См. также
Ссылки
Wikimedia Foundation. 2010.