- Точное земледелие
-
В условных цветах (на англ.) показана карта дифференцированного внесения для точного земледелия, полученная с помощью данных дистанционного зондирования Земли. Источник: Обсерватория Земли НАСА (на англ.)[1]
Содержание
Точное земледелие
В основе научной концепции точного земледелия лежат представления о существовании неоднородностей в пределах одного поля. Для оценки и детектирования этих неоднородностей используются новейшие технологии, такие как системы глобального позиционирования (GPS, ГЛОНАСС), специальные датчики, аэрофотоснимки и снимки со спутников, а также специальные программы для агроменеджмента на базе геоинформационных систем (ГИС). Собранные данные используются для планирования высева, расчёта норм внесения удобрений и средств защиты растений (СЗР), более точного предсказания урожайности и финансового планирования. Данная концепция требует обязательно принимать во внимание локальные особенности почвы/климатические условия. В отдельных случаях это может позволить легче установить локальные причины болезней или уплотнений.
На среднем западе США точное земледелие ассоциируется не с концепцией устойчивого земледелия (статья об «устойчивом земледелии» на английском), но с мэйнстримом в агробизнесе, который стремится максимизировать прибыль , производя затраты только на удобрение тех участков поля, где удобрения действительно необходимы. Следуя этим идеям агропроизводители применяют технологии переменного или дифференцированного внесения удобрений на тех участках поля, которые идентифицированы с помощью GPS-приёмников[уточнить] и где потребность в определённой норме удобрений выявлена агротехнологом при помощи карт агрохимобследования и урожайности. Поэтому в некоторых участках поля норма внесения или опрыскивания становится меньше средней, происходит перераспределение удобрений в пользу участков, где норма должна быть выше, и, тем самым, оптимизируется внесение удобрений.
Точное земледелие может применяться для улучшения состояния полей и агроменеджмента, по нескольким направлениям:
- агрономическое: с учётом реальных потребностей культуры в удобрениях совершенствуется агропроизводство
- техническое: совершеннее тайм-менеджмент на уровне хозяйства (в том числе, улучшается планирование сельскохозяйственных операций)
- экологическое: сокращается негативное воздействие сельхозпроизводства на окружающую среду (более точная оценка потребностей культуры в азотных удобрениях приводит к ограничению применения и разбрасывания азотных удобрений или нитратов)
- экономическое: рост производительности и/или сокращение затрат повышают эффективность агробизнеса (в том числе, сокращаются затраты на внесение азотных удобрений)
Электронная запись и хранение истории полевых работ и урожаев может помочь как при последующем принятии решений, так и при составлении специальной отчётности о производственном цикле, которая всё чаще требуется законодательством развитых стран.
Этапы и технологии
Точное земледелие можно подразделить на четыре этапа, которым соответствуют технологии, позволяющие выявить неоднородности в пределах поля.
Координатная привязка данных
Координатная привязка поля, иначе говоря, электронная карта даёт возможность агроменеджеру сохранить результаты анализа почвы в виде слоя электронной карты. Также могут быть и другие слои: предшествующие культуры, удельное сопротивление почвы, кислотность, грансостав и иные. Существует два способа изготовления электронных карт:
- оцифровка контуров методом объезда полей с GPS-приемником на автомобиле или тракторе;
- выделение и оцифровка границ полей по растровым аэрофотоснимкам либо космическим снимкам (данным дистанционного зондирования Земли из космоса). При этом растровый снимок, который подвергается векторизации, должен быть правильно откорректирован и обладать приемлемым разрешением, в противном случае качество векторизации или оцифровки полей по снимку будет неудовлетворительным.
Описание неоднородностей
Неоднородности внутри поля и от поля к полю зависят от ряда факторов: погодных явлений и климата (дождь, засуха и т.п.), характеристик почвы (грансостав, мощность гумусового слоя, обеспеченность азотом...), способов обработки почвы (нулевая обработка, минимальная обработка), а также засорённости полей и заселённости их болезнями и патогенами. Показатели-константы, главным образом, относящиеся к характеристикам почвы, дают информацию о базовых экологических постоянных. Точечные показатели позволяют отслеживать состояние культуры и биомассы, например, понять, насколько та или иная болезнь влияет на развитие культуры и урожайность, страдает ли культура от недостатка воды, нехватки азота в почве, либо от поражённости какой-либо болезнью, повреждена ли она заморозками и тому подобное. Эта информация может поступать с метеостанций, а также из других источников (сенсоров электропроводности почвы, космических снимков, экспертная оценка агронома и т.д.). Измерение электроповодности почвы, совмещённое с анализом механического и химического состава почвы, позволяет создать точную карту агроэкологических условий.
Принятие решений - две стратегии учёта неоднородностей
Используя карты агрофизико-химических показателей почвы агроменеджер может реализовать две стратегии для оптимизации затрат:
- основываясь на анализе статических индикаторов (почвенных показателей, электропроводности, истории полей и т.д.) в течение фазы развития культуры спрогнозировать затраты (прогностический подход);
- контролирующий подход, когда информация от статических индикаторов регулярно обновляется в течение фазы развития культуры в результате:
- отбора образцов: взвешивания биомассы, измерения содержания хлорофилла в листьях, взвешивания плодов, и т.д.;
- дистанционного определения параметров: температуры (воздуха/почвы), влажности (воздуха/почвы/листвы), скорости и направления ветра, диаметра стеблей;
- контактного детектирования: возимые сенсоры биомассы; потребуется объезд полей по контурам;
- аэро- или космо-съёмки (дистанционного зондирования): обработка мульти-спектрального снимка для выделения биофизических параметров культуры.
На современном этапе принимаемые управленческие решения могут основываться на моделях, описывающих процесс их принятия (симуляторы фаз развития культур и модели рекомендуемых мероприятий для сохранения заданных параметров в каждой фазе), но конкретное решение агроменеджер принимает самостоятельно, исходя из поддержания баланса экономических и экологических целей.
Практика работы с неоднородностями
Новые информационные и коммуникационные технологии позволяют легко и обоснованно управлять культурами на уровне поля. Принятие решений в сфере современного сельскохозяйственного производства требует специальной техники и машин, которые бы поддерживали технологии переменного внесения (VRT), например, переменного дозирования семян либо дифференцированного внесения удобрений и средств защиты растений (VRA). Для внедрения точного земледелия необходимо следующее оборудование (установленное на тракторах, опрыскивателях, комбайнах и т.п.):
- система позиционирования (например, на основе двухсистемных навигационных спутниковых приемников GPS/GLONASS, которые с высокой точностью позволяют определить местоположение на земной поверхности);
- географическая информационная система (ГИС), т.е. программное обеспечение, которое интегрирует все доступные данные в разных форматах, в слоях и из различных источников, включая данные с различных датчиков и экспертные оценки агронома;
- оборудование для переменного дозирования (интегрированное в сеялку, разбрасыватель, опрыскиватель).
См. также
- Геостатистика
- Органическое сельское хозяйство
- InfoAg Conference Конференция «ИнфоАг» (на английском)
Ссылки
- Purdue Site-Specific Management Center (англ.) Центр геореференцированного управления в Университете Пурду.
Примечания
- ↑ Precision Farming : Image of the Day. earthobservatory.nasa.gov. Проверено 31 августа 2012.
Категории:- Сельское хозяйство
- Агрономия
- Сельскохозяйственное почвоведение
- Бережливое производство
Wikimedia Foundation. 2010.