Синтез олигонуклеотидов


Синтез олигонуклеотидов

Синтез олигонуклеотидов — это химический синтез относительно коротких фрагментов нуклеиновых кислот с заданной химической структурой (последовательностью). Метод очень полезен в современной лабораторной практике, поскольку он позволяет получать олигонуклеотиды нужной последовательности быстрым и недорогим способом. В то время как ферменты синтезируют ДНК и РНК в направлении 5'→3', химический синтез олигонуклеотидов проводится в обратном направлении (3'→5'). В настоящее время процесс реализован как твердофазный синтез по амидофосфитному методу с использованием амидофосфитных строительных блоков, производных от защищённых 2'-дезоксинуклеозидов (dA, dC, dG и T), рибонуклеозидов (A, C, G и U) или химически модифицированных нуклеозидов, например, LNA. Для получения целевого олигонуклеотида строительные блоки последовательно конденсируют с растущей олигонуклеотидной цепью в порядке, задаваемом последовательностью олигонуклеотида. Процесс был полностью автоматизирован в конце 1970-х гг. После завершения синтеза цепи продукт отделяется от твердофазного носителя, защитные группы удаляются, после чего олигонуклеотид очищается ВЭЖХ. Протекание побочных реакций накладывает ограничение на длину синтезируемого олигонуклеотида (до 200 нуклеотидных остатков), поскольку число ошибок накапливается с увеличением длины целевого продукта[1]. Одноцепочечные молекулы ДНК или РНК длиной 15-25 оснований являются наиболее употребимыми синтетическими олигонуклеотидами. Олигонуклеотиды находят широкое применение в молекулярной биологии и медицине, например, как антисмысловые олигонуклеотиды, праймеры для секвенирования и амплификации ДНК, зонды для определения комплементарных последовательностей ДНК и РНК, инструменты для нацеленного введения мутаций и сайтов рестрикции, а также для синтеза искусственных генов.

Содержание

История

В процессе эволюции синтеза олигонуклеотидов появилось четыре основных метода создания связей между нуклеозидами. Они были детально рассмотрены в литературе.[2][3][4]

Ранние работы и современный H-фосфонатный метод

В начале 1950-х гг. группа Александра Тодда заложила основы H-фосфонатного и фосфотриэфирного методов синтеза олигонуклеотидов[5][6]. Реакция соединений 1 и 2 с образованием H-фосфонатного диэфира 3 является примером H-фосфонатной конденсации в растворе, в то время как реакция между 4 и 5 с образованием 6 — это фосфотриэфирная конденсация.

Todd's dinucleotide synthesis.png
Схема H-фосфонатного олигонуклеотидного синтеза
Схема фосфодиэфирного синтеза
Схема фосфотриэфирного синтеза

Тридцать лет спустя эта работа вдохновила две исследовательские группы адаптировать H-фосфонатную конденсацию к твердофазному синтезу с использованием нуклеозидных H-фосфонатов в качестве строительных блоков, а пивалоилхлорида, 2,4,6-триизопропилбензолсульфонилхлорида (TIPS-Cl) и других соединений — в качестве активаторов[7][8]. Практически метод был организован в виде очень простого синтетического цикла, состоящего из двух стадий: снятия диметокситритильной защиты и конденсации. Окисление H-фосфонатной диэфирной связи между нуклеозидами в фосфодиэфирные связи проводится после синтеза олигонуклеотидной цепи под действием раствора йода в водном пиридине.

Фосфодиэфирный метод

В 1950-х гг. Корана и сотрудники разработали фосфодиэфирный метод, в котором 3'-O-ацетилнуклеозид-5'-O-фосфат активировался N,N'-дициклогексилкарбодиимидом (DCC) или п-толуолсульфонилхлоридом (TsCl), а затем вводился в реакцию с 5'-O-защищённым нуклеозидом с образованием динуклеозидмонофосфата.[9] После удаления защитной ацетильной группы в основной среде, проводили дальнейшее удлинение цепи. Следуя данному методу, были синтезированы наборы три- и тетрадезоксирибонуклеотидов, которые затем были превращены в более длинные олигонуклеотиды, позволившие расшифровать генетический код. Главным ограничением фосфодиэфирного метода является образование пирофосфатных олигомеров и олигонуклеотидов, разветвлённых у межнуклеозидной фосфатной группы. Метод кажется шагом назад по сравнению с описанным ранее более селективным подходом, однако большинство доступных сегодня защитных групп для фосфата в то время ещё не было открыто. Нехватка удобной стратегии защиты потребовала отказа от более медленной и менее селективной химии для достижения цели исследования.[3]

Фосфотриэфирный метод

В 1960-х гг. группы под руководством Р. Летсингера (R. Letsinger)[10] и К. Риза (C. Reese)[11] разработали фосфотриэфирный метод. Определяющее отличие от фосфодиэфирного подхода состоит в предварительной защите фосфата в реагенте и продукте цианэтильной группой. Это изменение исключило возможность образования разветвлённых олигонуклеотидов. Бо́льшая селективность метода позволила использовать более реакционноспособные конденсирующие реагенты и катализаторы[12][13], которые значительно уменьшили продолжительность синтеза. Метод, изначально разработанный для синтеза в растворе, был также применен и в твердофазном синтезе на полистироле с низкой степенью сшивки, который инициировал широкий научный поиск в твердофазном синтезе олигонуклеотидов и в конце концов привёл к автоматизации синтеза.

Фосфитный триэфирный метод

В 1970-х гг. в практику был введен фосфиттриэфирный метод образования межнуклеозидных связей, в котором были использованы существенно более реакционноспособные нуклеозидные производные на основе P(III), первоначально хлорофосфиты.[14] Позже, группа под руководством М. Карузерса (M. Caruthers) использовала менее агрессивные и более селективные 1H-тетразолидофосфиты и реализовала метод в твердофазном варианте[15]. Вскоре после этого сотрудники из той же группы улучшили метод путём использования в качестве строительных блоков более стабильных нуклеозидных амидофосфитов. Постановка 2-цианэтильной защиты на фосфитную группу вместо менее удобной метильной группы привела к получению нуклеозидных производных, в данное время используемых в синтезе олигонуклеотидов[16][17]. Многочисленные дальнейшие усовершенствования, касающиеся синтеза мономерных блоков, оборудования и синтетических методик, превратили амидофосфитный подход в очень надёжный и лёгкий метод получения синтетических олигонуклеотидов.[1]

Синтез амидофосфитным методом

Строительные блоки

Нуклеозидные амидофосфиты

Структуры защищённых нуклеозидных амидофосфитов

Природные нуклеотиды (нуклеозид-3'- или 5'-фосфаты) и их фосфодиэфирные аналоги недостаточно реакционноспособны, чтобы обеспечить удобный метод синтеза олигонуклеотидов с высоким выходом. Селективность и скорость образования межнуклеозидных связей значительно увеличиваются при использовании N,N-диизопропиламидофосфитных производных нуклеозидов (нуклеозидных амидофосфитов), которые выполняют роль строительных блоков в фосфитном методе. Для предотвращения нежелательных побочных реакций функциональные группы амидофосфитов должны быть заблокированы защитными группами. После окончания сборки олигонуклеотидной цепи все защитные группы удаляются, что приводит к целевому олигонуклеотиду. Ниже рассмотрены защитные группы применяемые в стандартных коммерчески доступных нуклеозидных амидофосфитах[18]:

  • Гидроксильная группа в 5'-положении защищается 4,4'-диметокситритильной (DMT) защитной группой, неустойчивой в кислой среде.
  • Тимин и урацил, азотистые основания тимидина и уридина соответственно, не имеют экзоциклических аминогрупп, поэтому не нуждаются в защитных группах. Хотя азотистое основание в гуанозине и 2'-дезоксигуанозине имеет экзоциклическую аминогруппу, основность последней низка, и она не вступает в реакцию с амидофосфитами в условиях реакции конденсации. Однако, амидофосфитное производное, синтезированное из N2-незащищенного 5'-O-DMT-2'-дезоксигуанозина, плохо растворимо в ацетонитриле — растворителе, наиболее часто используемом в синтезе олигонуклеотидов. Напротив, N2-защищённые производные того же соединения хорошо растворимы в ацетонитриле, поэтому и применяются гораздо шире. Азотистые основания аденин и цитозин содержат аминогруппы, способные реагировать с амидофосфитами в процессе синтеза. Хотя путем введения в синтетический цикл дополнительных стадий можно добиться использования незащищённых амидофосфитов dA и dC для сборки олигонуклеотидных последовательностей[19], этот метод не получил широкого признания. Как правило, в рутинном синтезе используются N-защищенные амидофосфиты dA и dC, a соответствующие основания остаются защищёнными в течение всего синтеза. Защита аминогрупп должна быть ортогональна по отношению к защите 5'-гидроксильной группы, которая удаляется после каждого цикла. Наиболее простой вариант — использование защитных групп, лабильных в основной среде. Чаще всего используются два подхода описанных ниже.
  • В первом, стандартном, походе для защиты A, dA, C и dC используется бензоильная защита (Bz), тогда как G и dG защищаются изобутирильной группой. Позже для защиты C и dC была введена ацетильная (Ac) группа[20].
  • Во второй, более мягкой, защитной схеме A и dA защищают изобутирильной[21] или феноксиацетильной (PAC)[22] группами. C и dC содержат ацетильную защитную группу[20], а G и dG защищены 4-изопропилфеноксиацетильной (iPr-PAC)[23] или диметилформамидиновой (dmf)[24] группами. Мягкие защитные группы удаляются легче стандартных, однако, амидофосфиты с данными группами менее стабильны при хранении в растворе.
Структуры защищённых рибонуклеозидных амидофосфитов
  • Фосфитная группа защищается 2-цианэтильной группой[17]. Присутствие фосфитной защиты обязательно для амидофосфита и новообразованной фосфиттриэфирной группы до окисления последней в фосфотриэфир. В то же время, присутствие защиты на фосфатной группе не является обязательным для успешного проведения дальнейших циклов конденсации[25].
  • В синтезе РНК, 2'-гидроксильную группу защищают трет-бутилдиметилсилильной (TBDMS)[26][27][28] или триизопропилсилилоксиметильной (TOM)[29][30] группой. Обе группы удаляются действием фторид-иона.
  • Фосфитная группа также содержит диизопропиламинную группу (i-Pr2N), реакционноспособную в кислых условиях. При активации эта группа отщепляется и замещается 5'-гидроксильной группой олигонуклеотида, иммобилизованного на твёрдой фазе.

Ненуклеозидные амидофосфиты

Структуры ненуклеозидных амидофосфитов
Схема амидофосфитного олигонуклеотидного синтеза

Ненуклеозидные амидофосфиты это амидофосфитные реагенты, разработанные для введения разнообразных функциональных групп в концевое положение олигонуклеотида или между нуклеотидными остатками посреди последовательности. Чтобы быть пригодным для введения в середину цепи, амидофосфит должен содержать, по крайней мере, две гидроксильные группы, одна из которых защищается DMT-группой, а вторая несёт реакционноспособную амидофосфитную группировку.

Ненуклеозидные амидофосфиты применяются для введения в олигонуклеотид различных групп, которые не встречаются в природных нуклеозидах. Синтезирован широкий спектр подобных реагентов, служащих, например, для введения 5'-фосфата[31], аминогруппы[32], меркаптогруппы[33], альдегидной[34] и карбоксильной[35] групп, алкиновых фрагментов[36], флуоресцентных красителей[37] и тушителей, гидрофильных[38] и гидрофобных[39] модификаций, биотина[40]. Набор реагентов, изображенных на схеме, служит лишь для демонстрации широты выбора и является далеко не исчерпывающим.

Синтетический цикл

Синтез олигонуклеотидов проводится путём пошаговой конденсации нуклеотидных остатков к 5'-концу растущей цепи, пока не будет собрана целевая последовательность. Каждая стадия конденсации называется циклом синтеза и состоит из четырёх химических реакций.

Стадия 1: Удаление тритильной защиты

Защитная группа DMT снимается раствором кислоты, например, 2%-ой трихлоруксусной кислотой или 3%-ой дихлоруксусной кислотой в инертном растворителе (хлористый метилен или толуол). Образующийся диметокситритильный катион оранжевого цвета вымывается из системы. В результате образуется закреплённый на твердофазном носителе предшественник олигонуклеотида со свободной 5'-гидроксильной группой. Проведение процесса в течение более длительного времени или с использованием более концентрированных растворов кислоты приводит к отщеплению пуриновых оснований от остатка сахара.

Стадия 2: Конденсация

Раствор нуклеозидного амидофосфита (0,02-0,2 М) или смеси нескольких амидофосфитов в ацетонитриле активируют 0,2-0,7 М раствором катализатора на основе азола: 1H-тетразола, 2-этилтиотетразола[41], 2-бензилтиотетразола[42], 4,5-дицианимидазола[43] и др. Смешивание обычно происходит в коммуникациях синтезатора в то время, как реагенты доставляются в реакторы, содержащие твердофазный носитель. Активированный амидофосфит в 1,5—20-кратном избытке приводится во взаимодействие с исходным носителем (первая конденсация) или предшественником олигонуклеотида на носителе (последующие конденсации), 5'-гидроксильная группа которого реагирует с активированной амидофосфитной группой с образованием фосфитной триэфирной связи. Амидофосфитное сочетание происходит очень быстро и в небольших масштабах занимает, как правило, около 20 с. Реакция также весьма чувствительна к присутствию воды, особенно, при использовании разбавленных растворов амидофосфитов, поэтому обычно она проводится в безводном ацетонитриле. При увеличении масштабов синтеза используют меньшие избытки и более концентрированные растворы амидофосфитов. После завершения реакции избыток реагентов и побочные продукты удаляются из реактора промыванием.

Стадия 3: Кэпирование

Кэпирование проводится путём обработки твердофазного носителя смесью уксусного ангидрида и 1-метилимидазола (реже — DMAP) в качестве катализатора. В рамках амидофосфитного синтеза эта стадия служит двум целям:

  • После завершения предыдущей стадии конденсации небольшая часть 5'-гидроксильных групп (0,1-1 %) остаётся непрореагировавшими и должна быть навсегда заблокирована от дальнейшего удлинения цепи, чтобы предотвратить образование олигонуклеотидов с недостающими фрагментами внутри цепи. По этой причине оставшиеся гидроксильные группы защищаются ацетильными группами, устойчивыми к действию растворов кислот, используемых для снятия DMT-защиты.
  • Сообщалось также, что амидофосфиты, активированные 1H-тетразолом, в небольшой степени реагируют с O6-положением гуанозина[44]. При окислении смесью I2/вода этот побочный продукт претерпевает отщепление пуринового основания. Образующиеся апуриновые сайты легко гидролизуются в ходе конечного снятия защитных групп олигонуклеотида, что приводит к образованию двух более коротких олигонуклеотидов и уменьшению выхода целевого продукта. O6-модификации быстро удаляются под действием кэпирующего реагента, если кэпирование проводится перед стадией окисления.
  • Синтез олигонуклеотидных тиофосфатов не требует стадии окисления и, соответственно, не страдает от побочной реакции, описанной выше. С другой стороны, если кэпирование проводится непосредственно перед сульфурированием, то после кэпирования твердофазный носитель может содержать остаточные количества уксусного ангидрида и 1-метилимидазола. Кэпирующая смесь мешает реакции переноса серы, и наблюдается образование фосфатов вместо тиофосфатов. В таком случае рекомендуют проводить кэпирование после реакции сульфурирования[45].

Стадия 4: Окисление

Сформированная трехкоординированная фосфитная связь не является природной и обладает ограниченной стабильностью в условиях синтеза. Обработка носителя йодом и водой в присутствии слабого основания (пиридин, лутидин или коллидин) окисляет фосфит в фосфотриэфир, предшественник природной фосфодиэфирной межнуклеозидной связи.

Твердофазные носители

В процессе всего твердофазного синтеза собираемый олигонуклеотид ковалентно связан с твердофазным носителем через 3'-гидроксильную группу. Носитель содержится в колонках, размер которых зависит от масштаба синтеза и может варьироваться от нескольких десятков микролитров до литров. Большинство олигонуклеотидов синтезируют в малом масштабе от 40 нмоль до 1 мкмоль. Позже появился высокопроизводительный олигонуклеотидный синтез, в котором носитель размещается в лунках планшета (96 или 384 лунок на планшет)[46]. После окончания синтеза олигонуклеотид отщепляется от носителя и смывается с колонки.

Материал носителя

В отличие от органического твердофазного синтеза и пептидного синтеза, синтез олигонуклеотидов лучше протекает на ненабухающих или слабонабухающих твердофазных носителях. Наиболее используемыми носителями являются CPG (controlled pore glass, стекло с регулируемым размером пор) и MPPS (макропористый полистирол).[47]

  • CPG обычно характеризуют размером пор. Для синтеза олигонуклеотидов длиной около 50, 80, 100, 150 и 200 оснований пользуются стеклом с размером пор 500, 1000, 1500, 2000 и 3000 Å соответственно. Для того, чтобы сделать такой носитель пригодным для синтеза, его обрабатывают (3-аминопропил)триэтоксисиланом (APTES), получая аминопропильное CPG. Аминопропильный спейсер может быть удлинён, это приведёт к LCAA (long chain aminoalkyl) CPG. Аминогруппа на поверхности стекла далее используется как якорная группа для различных линкеров, используемых в химии олигонуклеотидов.
  • MPPS, используемый в синтезе олигонуклеотидов, это слабонабухающий полистирол с высокой степенью сшивки, получаемый сополимеризацией дивинилбензола (минимум 60 %), стирола и 4-хлорметилстирола в присутствии порогенного агента. Получаемый при этом макропористый хлорметильный полистирол затем превращают в аминометильный MPPS.

Химия линкера

Структуры носителей для олигонуклеотидного синтеза: 1, 2 — универсальные носители, 3 — нуклеозидный носитель, 4 — пример специального носителя
Гидролиз P-O-связи при отщеплении олигонуклеотида от универсального линкера
Диастереомеры олигонуклеотидных тиофосфатов
Реагенты для сульфурирования

Для нужд олигонуклеотидного синтеза к аминогруппам аминопропильного CPG, LCAA CPG или аминометильного MPPS ковалентно присоединяют нуклеозидные сукцинаты или ненуклеозидные линкеры. Непрореагировавшие аминогруппы после этого кэпируют уксусным ангидридом. Обычно используют три различных типа носителей.

  • Универсальные носители. В более удобном методе синтез начинается с универсального носителя, к которому присоединён ненуклеозидный линкер[48]. Амидофосфит, соответствующий 3'-терминальному нуклеозиду, присоединяется к универсальному носителю по стандартной методике в ходе первого синтетического цикла. Затем продолжается сборка необходимой последовательности, после которой олигонуклеотид снимается с поверхности носителя. Характерной особенностью универсальных носителей является то, что отщепление олигонуклеотида происходит путём гидролиза связи P-O, соединяющей 3'-O-атом 3'-терминального олигонуклеотида с универсальным линкером. Преимущество данного подхода заключается в том, что один универсальный носитель может быть использован во всех синтезах независимо от того, какую последовательность необходимо синтезировать.
  • Нуклеозидные носители. В исторически первом, хотя и менее популярном в настоящее время подходе, синтез олигонуклеотида проводится на носителе, к которому заранее, через фрагмент янтарной кислоты, ковалентно присоединён 3'-концевой олигонуклеотид. Соответственно, синтез начинается с присоединения амидофосфита, соответствующего не первому, а второму нуклеотиду, считая с 3'-конца. Недостатком такого носителя является то, что для синтеза определённого олигонуклеотида необходимо выбирать один из восьми вариантов носителей, что уменьшает производительность синтетического процесса и увеличивает вероятность человеческой ошибки.
  • Специальные носители используются для присоединения некоторой функциональной или репортерной группы к 3'-положению синтетических олигонуклеотидов. Коммерчески доступны носители для введения аминогрупп[49], меркаптогрупп[50], тушителей флуоресценции[51] и др.

Олигонуклеотидные тиофосфаты и их синтез

Олигонуклеотидные тиофосфаты — это модифицированные олигонуклеотиды, в которых один из атомов кислорода в фосфатном остатке замещен на атом серы. Широко используются только те тиофосфаты, в которых сера находится не в межнуклеотидном мостике. Замена кислорода на серу создаёт новый центр хиральности на фосфоре. В простейшем случае динуклеотида это приводит к образованию SP- и RP-диастереомеров. В n-мерном олигонуклеотиде, в котором все (n-1) межнуклеотидных связей являются тиофосфатными, число диастереомеров составляет 2(n-1). Будучи неприродными аналогами нуклеиновых кислот, олигонуклеотидные тиофосфаты значительно более устойчивы к гидролизу нуклеазами, классом ферментов, которые уничтожают нуклеиновые кислоты, разрушая P-O-связь фосфодиэфирного мостика. Это свойство определяет использование тиофосфатов в качестве антисмысловых олигонуклеотидов в приложениях in vivo и in vitro, где неизбежно воздействие нуклеаз. Подобным образом, чтобы увеличить стабильность малых интерферирующих РНК, часто вводят, по крайней мере, одну тиофосфатную связь в 3'-положение смысловой и антисмысловой цепи. В оптически чистых олигонуклеотидных тиофосфатах диастереомеры, имеющие все SP-конфигурации, более устойчивы к ферментативному разложению, чем RP-аналоги. Однако, синтез оптически чистых тиофосфатов сложен[52]. В лабораторной практике обычно пользуются смесями диастереомеров.

Синтез олигонуклеотидных тиофосфатов весьма похож на синтез природных олигонуклеотидов. Разница заключается в том, что стадия окисления заменяется реакцией сульфурирования. Кэпирование в данном случае проводится после сульфурирования. Для этой цели применяются три коммерчески доступных реагента:

  • 3-(Диметиламинометилиденамино)-3H-1,2,4-дитиазол-3-тион (DDTT) обеспечивает высокую скорость сульфурирования и обладает стабильностью в растворе.[45]
  • Реагент Бокажа (Beaucage Reagent) имеет более высокую растворимость в ацетонитриле и обеспечивает протекание реакции за более короткое время. Однако, он имеет ограниченную стабильность в растворе и менее эффективен при сульфурировании связей РНК.[53]
  • N,N,N',N'-Тетраэтилтетурамдисульфид (TETD) растворим в ацетонитриле, однако, реакция сульфурирования межнуклеозидной связи ДНК занимает 15 мин, что в 10 раз медленнее, чем в случае двух предыдущих соединений.[54]

Автоматизация

Ранее олигонуклеотидный синтез проводился вручную в растворе или на твёрдой фазе. Твердофазный синтез был реализован с использованием миниатюрных стеклянных колонок, снабжённых пористыми фильтрами[55]. В настоящее время твердофазный синтез проводится автоматически на олигонуклеотидных синтезаторах, управляемых компьютерами. Он может быть реализован в колоночном, планшетном или чиповом формате. Колоночный формат подходит для исследовательских или крупномасштабных целей, для которых высокая производительность не является критичной. Планшетный формат разработан специально для высокопроизводительного синтеза в малом масштабе для удовлетворения растущей потребности производства и науки в синтетических олигонуклеотидах. Различные виды синтезаторов коммерчески доступны.[56][57][58]

Пост-синтетическая обработка

После завершения сборки цепи олигонуклеотид полностью защищён:

  • 5'-концевая гидроксильная группа защищена DMT-группой;
  • межнуклеозидные фосфатные группы защищены 2-цианэтильными группами;
  • экзоциклические аминогруппы во всех нуклеиновых основаниях, кроме T и U, защищены ацильными защитными группами.

Для получения целевого олигонуклеотида необходимо удалить все защитные группы. Защита оснований и цианэтильные защитные группы обычно удаляются одновременно при обработке неорганическими основаниями или аминами. Применение данного метода, однако, ограничено тем, что при такой обработке в качестве побочного продукта образуется акрилонитрил. В условиях снятия защитных групп акрилонитрил может алкилировать азотистые основания, в основном, N3-положение тимина и урацила с образованием 2-цианэтильных производных по реакции Михаэля. Образования этих побочных продуктов можно избежать обработкой олигонуклеотидов, связанных с твердофазным носителем, растворами оснований в органическом растворителе, например, 50%-ым триэтиламином в ацетонитриле[59] или 10%-ым диэтиламином в ацетонитриле[60]. Такая обработка рекомендуется для синтеза в большом и среднем масштабе и может применяться при малых масштабах, когда концентрация образующегося акрилонитрила в растворе низка.

Как правило, олигонуклеотиды, связанные с носителем, обрабатывают по одной из двух схем:

  • Наиболее часто 5'-DMT-группа удаляется в конце синтеза, а олигонуклеотиды снимаются с носителя и деблокируются под действием водного аммиака, водного метиламина, их смесей[20], газообразных аммиака или метиламина[61], реже растворами других первичных аминов и щелочей при комнатной либо повышенной температуре. Такая обработка удаляет все защитные группы с 2'-дезоксиолигонуклеотидов, давая конечный продукт в растворе. В случае 2'-силилзащищённых олигорибонуклеотидов добавляется стадия удаления силильных защитных групп под действием фторид-иона[62]. Незащищённый продукт используется как есть или очищается каким-либо методом. Обычно, олигонуклеотид обессоливается осаждением в этанол, гель-фильтрацией или обращённо-фазовой ВЭЖХ. Для удаления побочных высокомолекулярных продуктов олигонуклеотиды очищают электрофорезом в полиакриламидном геле или анионно-обменной ВЭЖХ с последующим обессоливанием.
  • Второй подход используется, если целевой олигонуклеотид планируется далее очищать посредством обращённо-фазовой ВЭЖХ. В этом случае 5'-концевая DMT-группа сохраняется и в дальнейшем служит как гидрофобная метка. Олигонуклеотид деблокируется в основных условиях, как в первом подходе, и после упаривания очищается обращённо-фазовой ВЭЖХ. При этом его подвижность значительно отличается от подвижности примесей благодаря наличию дополнительной гидрофобной группы, что упрощает его выделение в чистом виде. DMT-группа затем удаляется в кислой среде, например, 80%-ой водной уксусной кислоте в течение 15-30 мин при комнатной температуре. Затем раствор упаривают и обессоливают, как описано выше.
  • Иногда в олигонуклеотид вводят дополнительную 5'-модификацию, используя одну из пост-синтетических методик.

Характеризация

Масс-спектр неочищенного олигонуклеотида 5'-DMT-T20 (расч. 6324,26 Да)

Как и в случае других органических веществ целесообразно охарактеризовать олигонуклеотид после его получения. В более сложных случаях (исследование или крупномасштабный синтез) это делают после снятия защитных групп и очистки. Несмотря на то, что наиболее решающим походом к характеризации олигонуклеотида является секвенирование, относительно недорогая и рутинная процедура, экономические соображения препятствуют его введению в производство олигонуклеотидов. В ежедневной практике достаточно получить молекулярную массу олигонуклеотида путём записи его масс-спектра. Используется два метода масс-спектрометрии: электроспрей и МАЛДИ масс-спектрометрия. Перед снятием спектра важно заменить все ионы металлов, которые могут присутствовать в образце, на ионы аммония или триалкиламмоиния.

  • При ионизации электроспреем олигонуклеотид даёт набор ионов, которые соответствуют разной степени ионизации соединения. Например, олигонуклеотид с молекулярной массой М даёт ионы с массами (М — nH)/n, где М — молекулярная масса олігонуклеотида в кислотной форме (все отрицательные заряды фосфодиэфирных связей компенсированы наличием протонов), n — это степень ионизации, Н — атомная масса атома водорода (1 Да). Наиболее полезны для характеризации ионы с n от 2 до 5.
  • Для получения более детальной информации о примесях в олигонуклеотиде используются подходы, комбинирующие хроматографические и масс-спектрометрические методы анализа.

См. также

Примечания

  1. 1 2 Beaucage S. L., Iyer R. P. Advances in the Synthesis of Oligonucleotides by the Phosphoramidite Approach (англ.) // Tetrahedron. — 1992. — Т. 48. — № 12. — С. 2223–2311. — DOI:10.1016/S0040-4020(01)88752-4
  2. Reese C. B. Oligo- and poly-nucleotides: 50 years of chemical synthesis (англ.) // Org. Biomol. Chem. — 2005. — Т. 3. — № 21. — С. 3851-3868. — DOI:10.1039/b510458k — PMID 16312051.
  3. 1 2 Brown D. M. A Brief History of Oligonucleotide Synthesis // Protocols for Oligonucleotides and Analogs: Synthesis and Properties. — Springer, 1993. — Т. 20. — P. 1-17. — (Methods in Molecular Biology).
  4. Iyer R. P., Beaucage S. L. 7.05 Oligonucleotide Synthesis // Comprehensive Natural Products Chemistry. — Elsevier, 1999. — Т. 7: DNA and Aspects of Molecular Biology. — P. 105–152.
  5. Michelson A. M., Todd A. R. Nucleotides part XXXII. Synthesis of a dithymidine dinucleotide containing a 3′: 5′-internucleotidic linkage (англ.) // J. Chem. Soc. — 1955. — С. 2632-2638. — DOI:10.1039/JR9550002632
  6. Hall R. H., Todd A., Webb R. F. 644. Nucleotides. Part XLI. Mixed anhydrides as intermediates in the synthesis of dinucleoside phosphates (англ.) // J. Chem. Soc. — 1957. — С. 3291-3296. — DOI:10.1039/JR9570003291
  7. Froehler B. C., Ng P. G., Matteucci M. D. Synthesis of DNA via deoxynucleoside H-phosphonate Intermediates (англ.) // Nucl. Acids Res. — 1986. — Т. 14. — № 13. — С. 5399-5407. — DOI:10.1093/nar/14.13.5399
  8. Garegg P. J., Lindh I., Regberg T., Stawinski J., Strömberg R. Nucleoside H-phosphonates. III. Chemical synthesis of oligodeoxyribonucleotides by the hydrogenphosphonate approach (англ.) // Tetrahedron Lett. — 1986. — Т. 27. — № 34. — С. 4051–4054. — DOI:10.1016/S0040-4039(00)84908-4
  9. Gilham P. T., Khorana H. G. Studies on Polynucleotides. I. A New and General Method for the Chemical Synthesis of the C5″-C3″ Internucleotidic Linkage. Syntheses of Deoxyribo-dinucleotides (англ.) // J. Am. Chem. Soc. — 1958. — Т. 80. — № 23. — С. 6212–6222. — DOI:10.1021/ja01556a016
  10. Letsinger R. L., Ogilvie K. K. Nucleotide chemistry. XIII. Synthesis of oligothymidylates via phosphotriester intermediates (англ.) // J. Am. Chem. Soc. — 1969. — Т. 91. — № 12. — С. 3350–3355. — DOI:10.1021/ja01040a042
  11. Reese C. B. The chemical synthesis of oligo- and poly-nucleotides by the phosphotriester approach (англ.) // Tetrahedron. — 1978. — Т. 34. — № 21. — С. 3143–3179. — DOI:10.1016/0040-4020(78)87013-6
  12. Efimov V. A., Buryakova A. A., Reverdatto S. V., Chakhmakhcheva O. G., Ovchinnikov Yu. A. Rapid synthesis of long-chain deoxyribooligonucleotides by the N-methylimidazolide phosphotriester method (англ.) // Nucl. Acids Res. — 1983. — Т. 11. — № 23. — С. 8369–8387. — DOI:10.1093/nar/11.23.8369
  13. Efimov V. A., Molchanova N. S., Chakhmakhcheva O. G. Approach to the Synthesis of Natural and Modified Oligonucleotides by the Phosphotriester Method Using O-Nucleophilic Intramolecular Catalysis (англ.) // Nucleosides, Nucleotides and Nucleic Acids. — 2007. — Т. 26. — № 8-9. — С. 1087-1093. — DOI:10.1080/15257770701516268 — PMID 18058542.
  14. Letsinger R. L., Finnan J. L., Heavner G. A., Lunsford W. B. Nucleotide chemistry. XX. Phosphite coupling procedure for generating internucleotide links (англ.) // J. Am. Chem. Soc. — 1975. — Т. 97. — № 11. — С. 3278–3279. — DOI:10.1021/ja00844a090 — PMID 1133350.
  15. Matteucci M. D., Caruthers M. H. Synthesis of deoxyoligonucleotides on a polymer support (англ.) // J. Am. Chem. Soc. — 1981. — Т. 103. — № 11. — С. 3185–3191. — DOI:10.1021/ja00401a041
  16. Beaucage S. L., Caruthers M. H. Deoxynucleoside phosphoramidites—A new class of key intermediates for deoxypolynucleotide synthesis (англ.) // Tetrahedron Lett. — 1981. — Т. 22. — № 20. — С. 1859–1862. — DOI:10.1016/S0040-4039(01)90461-7
  17. 1 2 Sinha N. D., Biernat J., McManus J., Köster H. Polymer support oligonucleotide synthesis XVIII1.2): use of β-cyanoethyi-N,N-dialkylamino-/N-morpholino phosphoramidite of deoxynucleosides for the synthesis of DNA fragments simplifying deprotection and isolation of the final product (англ.) // Nucl. Acids Res. — 1984. — Т. 12. — № 11. — С. 4539-4557. — DOI:10.1093/nar/12.11.4539
  18. Glen Research Applied Biosystems DNA & RNA Synthesizer Reagents  (англ.). Проверено 2 декабря 2012.
  19. Gryaznov S. M., Letsinger R. L. Synthesis of oligonucleotides via monomers with unprotected bases (англ.) // J. Am. Chem. Soc. — 1991. — Т. 113. — № 15. — С. 5876–5877. — DOI:10.1021/ja00015a059
  20. 1 2 3 Reddy M. P., Hanna N. B., Farooqui F. Ultrafast Cleavage and Deprotection of Oligonucleotides Synthesis and Use of CAc Derivatives (англ.) // Nucleosides and Nucleotides. — 1997. — Т. 16. — № 7-9. — С. 1589–1598. — DOI:10.1080/07328319708006236
  21. McMinn D. L., Greenberg M. M. Synthesis of oligonucleotides containing 3'-alkyl amines using N-isobutyryl protected deoxyadenosine phosphoramidite (англ.) // Tetrahedron Lett. — 1997. — Т. 38. — № 18. — С. 3123–3126. — DOI:10.1016/S0040-4039(97)00568-6
  22. Schulhof J. C., Molko D., Teoule R. The final deprotection step in oligonucleotide synthesis is reduced to a mild and rapid ammonia treatment by using labile base-protecting groups (англ.) // Nucl. Acids Res. — 1987. — Т. 15. — № 2. — С. 397-416. — DOI:10.1093/nar/15.2.397 — PMID 3822812.
  23. Zhu Q., Delaney M. O., Greenberg M. M. Observation and elimination of N-acetylation of oligonucleotides prepared using fast-deprotecting phosphoramidites and ultra-mild deprotection (англ.) // Bioorg. Med. Chem. Lett. — 2001. — Т. 11. — № 9. — С. 1105–1107. — DOI:10.1016/S0960-894X(01)00161-5
  24. McBride L. J., Kierzek R., Beaucage S. L., Caruthers M. H. Nucleotide chemistry. 16. Amidine protecting groups for oligonucleotide synthesis (англ.) // J. Am. Chem. Soc. — 1986. — Т. 108. — № 8. — С. 2040–2048. — DOI:10.1021/ja00268a052
  25. Guzaev A. P., Muthiah Manoharan M. Phosphoramidite Coupling to Oligonucleotides Bearing Unprotected Internucleosidic Phosphate Moieties (англ.) // J. Org. Chem. — 2001. — Т. 66. — № 5. — С. 1798–1804. — DOI:10.1021/jo001591e — PMID 11262130.
  26. Ogilvie K. K., Theriault N., Sadana K. L. Synthesis of oligoribonucleotides (англ.) // J. Am. Chem. Soc. — 1977. — Т. 99. — № 23. — С. 7741–7743. — DOI:10.1021/ja00465a073
  27. Usman N., Pon R. T., Ogilvie K. K. Preparation of ribonucleoside 3′-O-phosphoramidites and their application to the automated solid phase synthesis of oligonucleotides (англ.) // Tetrahedron Lett. — 1985. — Т. 26. — № 38. — С. 4567–4570. — DOI:10.1016/S0040-4039(00)98753-7
  28. Scaringe S. A., Francklyn C., Usman N. Chemical synthesis of biologically active oligoribonucleotides using β-cyanoethyl protected ribonucleoside phosphoramidites (англ.) // Nucl. Acids Res. — 1990. — Т. 18. — № 18. — С. 5433-5441. — DOI:10.1093/nar/18.18.5433
  29. Pitsch S., Weiss P. A., Wu X., Ackermann D., Honegger T. Fast and Reliable Automated Synthesis of RNA and Partially 2′-O- Protected Precursors (`Caged RNA') Based on Two Novel, Orthogonal 2′-O-Protecting Groups, Preliminary Communication (англ.) // Helv. Chem. Acta. — 1999. — Т. 82. — № 10. — С. 1753–1761. — DOI:10.1002/(SICI)1522-2675(19991006)82:10<1753::AID-HLCA1753>3.0.CO;2-Y
  30. Pitsch S., Weiss P. A., Jenny L., Stutz A., Wu X. Reliable Chemical Synthesis of Oligoribonucleotides (RNA) with 2′-O-[(Triisopropylsilyl)oxy]methyl(2′-O-tom)-Protected Phosphoramidites (англ.) // Helv. Chem. Acta. — 2001. — Т. 84. — № 12. — С. 3773–3795. — DOI:10.1002/1522-2675(20011219)84:12<3773::AID-HLCA3773>3.0.CO;2-E
  31. Guzaev A., Salo H., Azhayev A., Lönnberg H. A new approach for chemical phosphorylation of oligonucleotides at the 5′-terminus (англ.) // Tetrahedron. — 1995. — Т. 51. — № 34. — С. 9375–9384. — DOI:10.1016/0040-4020(95)00544-I
  32. Sinha N. D., Cook R.M. The preparation and application of functionalised synthetic oligonucleotides: III. Use of H-phosphonate derivatives of protected amino-hexanol and mercapto-propanol or-hexanol (англ.) // Nucl. Acids Res. — 1988. — Т. 16. — № 6. — С. 2659-2670. — DOI:10.1093/nar/16.6.2659
  33. Ede N. J., Tregear G. W., Haralambidis J. Routine Preparation of Thiol Oligonucleotides: Application to the Synthesis of Oligonucleotide-Peptide Hybrids (англ.) // Bioconjugate Chem. — 1994. — Т. 5. — № 4. — С. 373–378. — DOI:10.1021/bc00028a016
  34. Podyminogin M. A., Lukhtanov E. A., Reed M. W. Attachment of benzaldehyde-modified oligodeoxynucleotide probes to semicarbazide-coated glass (англ.) // Nucl. Acids Res. — 2001. — Т. 29. — № 24. — С. 5090-5098. — DOI:10.1093/nar/29.24.5090
  35. Lebedev A. V., Combs D., Hogrefe R. I. Preactivated Carboxyl Linker for the Rapid Conjugation of Alkylamines to Oligonucleotides on Solid Support (англ.) // Bioconjugate Chem. — 2007. — Т. 18. — № 5. — С. 1530–1536. — DOI:10.1021/bc0603891
  36. Alvira M., Eritja R. Synthesis of Oligonucleotides Carrying 5′-5′ Linkages Using Copper-Catalyzed Cycloaddition Reactions (англ.) // Chem. Biodiversity. — 2007. — Т. 4. — № 12. — С. 2798–2809. — DOI:10.1002/cbdv.200790229
  37. Kvach M. V., Tsybulsky D. A., Ustinov A. V., Stepanova I. A., Bondarev S. L., Gontarev S. V., Korshun V. A., Shmanai V. V. 5(6)-Carboxyfluorescein Revisited: New Protecting Group, Separation of Isomers, and their Spectral Properties on Oligonucleotides (англ.) // Bioconjugate Chem. — 2007. — Т. 18. — № 5. — С. 1691–1696. — DOI:10.1021/bc7001874
  38. Jäschke A., Fürste J. P., Nordhoff E., Hillenkamp F., Cech D., Erdmann V. A. Synthesis and properties of oligodeoxyribonucleotide—polyethylene glycol conjugates (англ.) // Nucl. Acids Res. — 1994. — Т. 22. — № 22. — С. 4810-4817. — DOI:10.1093/nar/22.22.4810
  39. Musumeci D., Montesarchio D. Synthesis of a Cholesteryl-HEG Phosphoramidite Derivative and Its Application to Lipid-conjugates of the Anti-HIV 5'TGGGAG3' Hotoda’s Sequence (англ.) // Molecules. — 2012. — Т. 17. — С. 12378-12392. — DOI:10.3390/molecules171012378
  40. Kayushin A., Demekhina A., Korosteleva M., Miroshnikov A., Azhayev A. Synthesis of biotin-containing phosphoramidite linker with polyether spacer arm (англ.) // Nucleosides, Nucleotides and Nucleic Acids. — 2011. — Т. 30. — № 7-8. — С. 490-502. — DOI:10.1080/15257770.2011.587702 — PMID 21888541.
  41. Sproat B., Colonna F., Mullah B., Tsou D., Andrus A., Hampel A., Vinayak R. An Efficient Method for the Isolation and Purification of Oligoribonucleotides (англ.) // Nucleosides and Nucleotides. — 1995. — Т. 14. — № 1-2. — С. 255-273. — DOI:10.1080/15257779508014668
  42. Welz R., Müller S. 5-(Benzylmercapto)-1H-tetrazole as activator for 2′-O-TBDMS phosphoramidite building blocks in RNA synthesis (англ.) // Tetrahedron Lett. — 2002. — Т. 43. — № 5. — С. 795–797. — DOI:10.1016/S0040-4039(01)02274-2
  43. Vargeese C., Carter J., Yegge J., Krivjansky S., Settle A., Kropp E., Peterson K., Pieken W. Efficient activation of nucleoside phosphoramidites with 4,5-dicyanoimidazole during oligonucleotide synthesis (англ.) // Nucl. Acids Res. — 1998. — Т. 26. — № 4. — С. 1046-1050. — DOI:10.1093/nar/26.4.1046
  44. Pon R. T., Usman N., Damha M. J., Ogilvie K. K. Prevention of guanine modification and chain cleavage during the solid phase synthesis of oligonucleotides using phosphoramidite derivatives (англ.) // Nucl. Acids Res. — 1986. — Т. 14. — № 16. — С. 6453-6470. — DOI:10.1093/nar/14.16.6453
  45. 1 2 Guzaev A. P. Reactivity of 3H-1,2,4-dithiazole-3-thiones and 3H-1,2-dithiole-3-thiones as sulfurizing agents for oligonucleotide synthesis (англ.) // Tetrahedron Lett. — 2011. — Т. 52. — № 3. — С. 434–437. — DOI:10.1016/j.tetlet.2010.11.086
  46. BioAutomation DNA / RNA Oligonucleotide Synthesizer: MerMade 384. Проверено 3 декабря 2012.
  47. Pon R. T. Solid‐Phase Supports for Oligonucleotide Synthesis // Current Protocols in Nucleic Acid Chemistry. — Wiley, 2001.
  48. Guzaev A. P., Muthiah Manoharan M. A Conformationally Preorganized Universal Solid Support for Efficient Oligonucleotide Synthesis (англ.) // J. Am. Chem. Soc. — 2003. — В. 9. — Т. 125. — С. 2380–2381. — DOI:10.1021/ja0284613
  49. Petrie C. R., Reed M. W., Adams A. D., Meyer Jr. R. B. An improved CPG support for the synthesis of 3'-amine-tailed oligonucleotides (англ.) // Bioconjugate Chem. — 1992. — В. 1. — Т. 3. — С. 85–87. — DOI:10.1021/bc00013a014
  50. Link Technologies 3'-Thiol Modifier C3 S-S CPG. Проверено 4 декабря 2012.
  51. Lumiprobe Black Hole 1 (BHQ-1) quencher CPG. Проверено 4 декабря 2012.
  52. Lebedev A. V., Wickstrom E. The chirality problem in P-substituted oligonucleotides (англ.) // Perspectives in Drug Discovery and Design. — 1996. — В. 1. — Т. 4. — С. 17-40. — DOI:10.1007/BF02172106
  53. Iyer R. P., Egan W., Regan J. B., Beaucage S. L. 3H-1,2-Benzodithiole-3-one 1,1-dioxide as an improved sulfurizing reagent in the solid-phase synthesis of oligodeoxyribonucleoside phosphorothioates (англ.) // J. Am. Chem. Soc. — 1990. — В. 3. — Т. 112. — С. 1253–1254. — DOI:10.1021/ja00159a059
  54. Vu H., Hirschbein B. L. Internucleotide phosphite sulfurization with tetraethylthiuram disulfide. Phosphorothioate oligonucleotide synthesis via phosphoramidite chemistry (англ.) // Tetrahedron Lett. — 1991. — В. 26. — Т. 32. — С. 3005–3008. — DOI:10.1016/0040-4039(91)80672-S
  55. Tanaka T., Letsinger R. L. Syringe method for stepwise chemical synthesis of oligonucleotides (англ.) // Nucl. Acids Res. — 1982. — В. 10. — Т. 10. — С. 3249-3259. — DOI:10.1093/nar/10.10.3249
  56. BioAutomation DNA / RNA Oligonucleotide Synthesizer: MerMade. Проверено 11 декабря 2012.
  57. БИОССЕТ. Проверено 11 декабря 2012.
  58. Azco Biotech, Inc. Azco DNA/RNA Synthesizers. Проверено 11 декабря 2012.
  59. Capaldi D. C., Gaus H., Krotz A. H., Arnold J., Carty R. L., Moore M. N., Scozzari A. N., Lowery K., Cole D. L., Ravikumar V. T. Synthesis of High-Quality Antisense Drugs. Addition of Acrylonitrile to Phosphorothioate Oligonucleotides:  Adduct Characterization and Avoidance (англ.) // Org. Proc. Res. Dev. — 2003. — В. 6. — Т. 7. — С. 832–838. — DOI:10.1021/op020090n
  60. Glen Research Deprotection – Volume 5 – On-Column Deprotection of Oligonucleotides in Organic Solvents. Проверено 11 декабря 2012.
  61. Boal J. H., Wilk A., Harindranath N., Max E. E., Kempe T., Beaucage S. L. Cleavage of oligodeoxyribonucleotides from controlled-pore glass supports and their rapid deprotection by gaseous amines (англ.) // Nucl. Acids Res. — 1996. — В. 15. — Т. 24. — С. 3115–3117. — DOI:10.1093/nar/24.15.3115
  62. Westman E., Strömberg R. Removal of f-butyldimethylsilyl protection in RNA-synthesis. Triethylamine trihydrofluoride (TEA, 3HF) is a more reliable alternative to tetrabutylammonium fluoride (TBAF) (англ.) // Nucl. Acids Res. — 1994. — В. 12. — Т. 22. — С. 2430-2431. — DOI:10.1093/nar/22.12.2430

Wikimedia Foundation. 2010.

Смотреть что такое "Синтез олигонуклеотидов" в других словарях:

  • ТВЕРДОФАЗНЫЙ СИНТЕЗ — методич. подход к синтезу олиго(поли)меров с использованием твердого нерастворимого носителя (Н.), представляющего собой орг. или неорг. полимер. Т. е. основан на том, что первое звено будущего олигомера ковалентно закрепляется на якорной группе… …   Химическая энциклопедия

  • Химический синтез ДНК — * хімічны сінтэз ДНК * chemical DNA synthesis синтез олигонуклеотидов in vitro (см.) длиной до 250 оснований из специально приготовленных нуклеозидов (см.) с помощью особых реагентов, обеспечивающих их соединение …   Генетика. Энциклопедический словарь

  • твердофазный синтез — получение олиго и полимеров с использованием твёрдого нерастворимого полимерного носителя. Используют для быстрого автоматизированного синтеза пептидов, олигонуклеотидов и олигосахаридов …   Энциклопедический словарь

  • ТВЕРДОФАЗНЫЙ СИНТЕЗ — получение олиго и полимеров с использованием твёрдого нерастворимого полимерного носителя. Используют для быстрого автоматизированного синтеза пептидов, олигонуклеотидов и олигосахаридов …   Естествознание. Энциклопедический словарь

  • БИООРГАНИЧЕСКАЯ ХИМИЯ — изучает связь между строением орг. в в и их биол. ф циями, используя в осн. методы орг. и физ. химии, а также физики и математики. Объекты изучения Б. х. биологически важные прир. и синтетич. соединения, гл. обр. биополимеры, а также витамины,… …   Химическая энциклопедия

  • НУКЛЕИНОВЫЕ КИСЛОТЫ — (полинуклеотиды), биополимеры, осуществляющие хранение и передачу генетич. инфор мации во всех живых организмах, а также участвующие в биосинтезе белков. Первичная структура Н. к. представляет собой последовательность остатков нуклеотидов.… …   Химическая энциклопедия

  • генная избыточность — * генны лішак * genetic redundancy наличие большого количества копий к. л. структурного гена на хромосоме, обычно в составе мультигенного семейства. Генная инженерия * генная інжынерыя * gene enginеering раздел генетической инженерии (см.), для… …   Генетика. Энциклопедический словарь

  • Систематическая эволюция лигандов экспоненциальным обогащением — (SELEX «Systematic Evolution of Ligands by EXponential Enrichment») процесс создания олигонуклеотидов одноцепочечной ДНК или РНК путем итерационного обогащения смеси олигонуклеотидов согласно их способности связываться с мишенью. Такие… …   Википедия

  • Очоа, Северо — В Википедии есть статьи о других людях с такой фамилией, см. Очоа. Северо Очоа исп. Severo Ochoa de Albornoz Дата рождения: 25 сентября 1905(1905 09 25) …   Википедия

  • антисенс-терапия — Термин антисенс терапия Термин на английском antisense therapy Синонимы Аббревиатуры Связанные термины генная инженерия, геном, клетка, РНК, нанолекарство, нанофармакология, доставка лекарственных средств, олигонуклеотид, эндоцитоз, генная… …   Энциклопедический словарь нанотехнологий