Дружественные числа


Дружественные числа

Дру́жественные чи́сла — два различных натуральных числа, для которых сумма всех собственных делителей первого числа равна второму числу и наоборот, сумма всех собственных делителей второго числа равна первому числу. Иногда частным случаем дружественных чисел считаются совершенные числа: каждое совершенное число дружественно себе. Большого значения для теории чисел эти пары не имеют, но являются любопытным элементом занимательной математики.

Содержание

История

Дружественные числа были открыты последователями Пифагора, которые, однако, знали только одну пару дружественных чисел — 220 и 284.

Формулу для нахождения некоторых пар дружественных чисел предложил примерно в 850 году арабский астроном и математик Сабит ибн Курра (826901). Его формула позволила найти две новые пары дружественных чисел. Много столетий спустя Эйлер нашёл ещё 65 пар дружественных чисел. Одна из них — 17296 и 18416. Но общего способа нахождения таких пар нет до сих пор.

Неизвестно, конечно или бесконечно количество пар дружественных чисел. На сентябрь 2007 года известно 11994387 пар дружественных чисел.[1] Все они состоят из чисел одной чётности. Существует ли чётно-нечётная пара дружественных чисел, неизвестно. Также неизвестно, существуют ли взаимно простые дружественные числа, но если такая пара дружественных чисел существует, то их произведение должно быть больше 10^{67}.

Примеры

Ниже приведены все пары дружественных чисел, меньших 100 000.

  1. 220 и 284 (Пифагор, около 500 до н. э.)
  2. 1184 и 1210 (Паганини, 1860)
  3. 2620 и 2924 (Эйлер, 1747)
  4. 5020 и 5564 (Эйлер, 1747)
  5. 6232 и 6368 (Эйлер, 1750)
  6. 10744 и 10856 (Эйлер, 1747)
  7. 12285 и 14595 (Браун, 1939)
  8. 17296 и 18416 (Ибн ал-Банна, около 1300, Фариси, около 1300, Ферма, Пьер, 1636)
  9. 63020 и 76084 (Эйлер, 1747)
  10. 66928 и 66992 (Эйлер, 1750)
  11. 67095 и 71145 (Эйлер, 1747)
  12. 69615 и 87633 (Эйлер, 1747)
  13. 79750 и 88730 (Рольф (Rolf), 1964)

Пары дружественных чисел образуют последовательность:

220, 284, 1184, 1210, 2620, 2924, 5020, 5564, 6232, 6368, … (последовательность A063990 в OEIS)

Способы построения

Формула Сабита

Если для натурального числа n>1 все три числа:

p=3\times 2^{n-1}-1,
q=3\times 2^n-1,
r=9\times 2^{2n-1}-1,

являются простыми, то числа 2^npq и 2^nr образуют пару дружественных чисел. Эта формула даёт пары (220, 284), (17296, 18416) и (9363584, 9437056) соответственно для n=2,\;4,\;7, но больше никаких пар дружественных чисел для n<20000 не существует. Кроме того, многие дружественные числа, например (6232, 6368), не могут быть получены по этой формуле.

Метод Вальтера Боро

Если для пары дружественных чисел вида A=au и B=as числа s и p=u+s+1 являются простыми, причём a не делится на p, то при всех тех натуральных n, при которых оба числа q_1=(u+1)p^{n+1}-1 и q_2=(u+1)(s+1)p^n-1 просты, числа B_1=A p^n q_1 и B_2=ap^nq_2 — дружественные.

См. также

Примечания

  1. Jan Munch Pedersen Known Amicable Pairs

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Дружественные числа" в других словарях:

  • ДРУЖЕСТВЕННЫЕ ЧИСЛА — два натуральных числа, каждое из которых равно сумме правильных делителей другого (т. е. делителей, меньших этого числа). Напр., 284 и 220 …   Большой Энциклопедический словарь

  • ДРУЖЕСТВЕННЫЕ ЧИСЛА — ДРУЖЕСТВЕННЫЕ ЧИСЛА, два натуральных числа, каждое из которых равно сумме правильных делителей другого (т. е. делителей, меньших этого числа). Напр., 284 и 220 …   Энциклопедический словарь

  • Дружественные числа —         пара натуральных чисел, каждое из которых равно сумме всех собственных (или правильных) делителей другого, т. е. делителей, отличных от самого числа. Д. ч. 284 и 220, имеющие соответствующую сумму делителей 1+2+4+5+10+11+20+22+44+55+110 …   Большая советская энциклопедия

  • ДРУЖЕСТВЕННЫЕ ЧИСЛА — пара натуральных чисел, каждое из к рых равно сумме собственных делителей другого, т. е. делителей, отличных от самого числа. Определение Д. ч. имеется уже в Началах Евклида, а также в трудах Платона. Древним грекам была известна одна пара Д. ч …   Математическая энциклопедия

  • Числа Армстронга — Самовлюблённое число, или совершенный цифровой инвариант (англ. pluperfect digital invariant, PPDI) или число Армстронга  натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную… …   Википедия

  • Избыточные числа — Избыточное число  положительное целое число n, сумма положительных собственных делителей (отличных от n) которого превышает n. Любое натуральное число относится к одному из трёх классов: избыточные числа, совершенные числа, недостаточные… …   Википедия

  • Рецепт Вальтера Боро — Дружественные числа  два натуральных числа, для которых сумма всех делителей первого числа (кроме него самого) равна второму числу и сумма всех делителей второго числа (кроме него самого) равна первому числу. Иногда частным случаем дружественных… …   Википедия

  • МАТЕМАТИКИ ИСТОРИЯ — Самой древней математической деятельностью был счет. Счет был необходим, чтобы следить за поголовьем скота и вести торговлю. Некоторые первобытные племена подсчитывали количество предметов, сопоставляя им различные части тела, главным образом… …   Энциклопедия Кольера

  • Совершенное число — (др. греч. ἀριθμὸς τέλειος)  натуральное число, равное сумме всех своих собственных делителей (т. е. всех положительных делителей, отличных от самого числа). По мере того как натуральные числа возрастают, совершенные числа встречаются… …   Википедия

  • Число Армстронга — Самовлюблённое число, или совершенный цифровой инвариант (англ. pluperfect digital invariant, PPDI или число Армстронга  натуральное число, которое в данной системе счисления равно сумме своих цифр, возведённых в степень, равную количеству его… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.