- Спектральная световая эффективность монохроматического излучения
-
Спектральная световая эффективность монохроматического излучения Размерность J·L-2·M-1·T3
Единицы измерения СИ лм·Вт-1
Примечания Спектра́льная светова́я эффекти́вность монохромати́ческого излуче́ния — физическая величина, характеризующая чувствительность человеческого глаза к воздействию на него монохроматического света. Обозначается , в системе СИ имеет размерность лм/Вт. Устаревшее название — видность.
Световую эффективность удобно и целесообразно представлять в виде произведения двух сомножителей: где — значение , достигаемое в максимуме, а — безразмерная функция длины волны, принимающая в максимуме значение, равное единице. Функция называется относительной спектральной световой эффективностью монохроматического излучения, её физический смысл заключается в том, что она представляет собой относительную спектральную чувствительность среднего человеческого глаза[1].
Содержание
Определения
Как известно, у человека существует два основных механизма восприятия света. Один из них реализуется с помощью колбочек при относительно высоких яркостях и освещенностях и носит название дневного зрения. Другой — палочковый — имеет место при низких значениях яркостей и освещенностей и называется ночным зрением[2] Эти механизмы существенно отличаются друг от друга как по величине чувствительности к свету, так и по характеру зависимости чувствительности глаза от длины волны воздействующего на него света. Соответственно, в фотометрии определяется две различных функции относительной спектральной световой эффективности: одна из них — для дневного зрения, другая — — для ночного.
Дневное зрение
Определение , основанное на процедуре измерения, формулируется следующим образом[3].
Относительной спектральной световой эффективностью монохроматического излучения для дневного зрения c длиной волны называют отношение двух потоков излучения соответственно с длинами волн и , вызывающих в точно определенных условиях зрительные ощущения одинаковой силы; при этом длина волны выбрана таким образом, что максимальное значение этого отношения равно единице.
Условия измерения в частности выбираются так, чтобы угловой размер поля зрения при измерениях составлял 2 градуса, что соответствует угловому размеру центрального углубления желтого пятна сетчатки.
Итогом большой работы, выполнение которой началось ещё в XIX веке, явилось получение набора значений для диапазона длин волн 380—770 нм. Значения были получены в результате усреднения данных, полученных с участием большого количества наблюдателей. В 1924 году Международная комиссия по освещению (МКО)[4] утвердила этот набор в качестве стандарта, после чего он стал международно признанным и в качестве такового используется вплоть до настоящего времени. В Российской Федерации данный стандарт также является действующим[3].
Зависимость приведена на рисунке. Её максимум располагается на длине волны 555 нм. В системе СИ единица силы света кандела определена таким образом, что максимальная световая эффективность монохроматического излучения для дневного зрения равна 683 лм/Вт[5]. Таким образом, выполняется:
Ночное зрение
В качестве определения световой эффективности для случая ночного зрения пригодна приведенная выше формулировка после соответствующей замены в ней наименования определяемой величины.
В результате выполнения необходимых измерений и исследований была получена зависимость . Её табличные значения были в 1951 г. утверждены МКО в качестве стандарта. В графическом виде она приведена на рисунке. Как видно из рисунка, кривая сдвинута относительно в коротковолновую сторону, при этом её максимум находится на 507 нм.
Сумеречное зрение
В сумеречном зрении одновременно принимают участие, как колбочки, так и палочки. При этом относительный вклад рецепторов каждого типа изменяется при изменении уровня освещения, соответственно изменяется и световая эффективность. Поэтому сумеречному зрению невозможно сопоставить какую-либо одну стандартную функцию, описывающую спектральную зависимость световой эффективности.
Использование
Активную часть своей жизни человек проводит главным образом в таких условиях освещения, когда функционирует дневное зрение. Пользуясь им, он получает большую часть визуальной информации. По этим причинам на практике в основном используется спектральная эффективность , относящаяся к дневному зрению. Именно она (вместе с коэффициентом ) лежит в основе системы световых фотометрических величин.
Система фотометрических величин устроена так, что любой энергетической величине соответствует определённая световая величина . В случае монохроматического света связь между ними описывается соотношением
Для немонохроматического света аналогичное по смыслу соотношение имеет вид:
где — спектральная плотность величины . Cпектральная плотность определяется как отношение величины приходящейся на малый спектральный интервал, располагающийся между и к ширине этого интервала:
С учетом численного значения получается:
Таким образом, использование относительной световой эффективности позволяет, зная энергетические характеристики света, рассчитывать его световые параметры.
Примечания
- ↑ Чувствительность глаза конкретного наблюдателя в норме может заметно отличаться от чувствительности глаза среднего наблюдателя. Различия становятся ещё значительнее при возрастных или патологических отступлениях от нормы.
- ↑ Отдельно выделяют также сумеречное зрение, когда одновременно функционируют и колбочки, и палочки.
- ↑ 1 2 ГОСТ 8.332-78. Государственная система обеспечения единства измерений. Световые измерения. Значения относительной cпектральной световой эффективности монохроматического излучения для дневного зрения.
- ↑ International Commission on Illumination (CIE)
- ↑ Число 683 лм/Вт является приближённым значением , более точное значение – 683,002 лм/Вт. Подробности приведены в статье Кандела.
См. также
Литература
Гуревич М. М. Фотометрия. Теория, методы и приборы. — Л.: Энергоатомиздат. Ленинградское отделение, 1983. — 272 с. — 7 500 экз.
Гуторов М. М. Основы светотехники и источники света. — М.: Энергоатомиздат, 1983. — 384 с. — 20 000 экз.
Категории:- Физические величины по алфавиту
- Физические величины
- Оптика
- Фотометрия
- Глаз
-
Wikimedia Foundation. 2010.