Эвольвентное зацепление


Эвольвентное зацепление
Движение точки соприкосновения зубьев с эвольвентным профилем

Эвольвентное зацепление позволяет передавать движение с постоянным передаточным отношением[1] [2]. Эвольвентное зацепление — зубчатое зацепление, в котором профили зубьев очерчены по эвольвенте окружности.

Для этого необходимо чтобы зубья зубчатых колёс были очерчены по кривой, у которой общая нормаль, проведённая через точку касания профилей зубьев, всегда проходит через одну и ту же точку на линии, соединяющей центры зубчатых колёс, называемую полюсом зацепления[3].

Содержание

Построение эвольвентного зацепления

Способ приближённого построения эвольвентного зубчатого зацепления. Подходит для технических рисунков, построенных от руки или с помощью САПР.

Перед построением необходимо задать следующие размеры:

  • высота ножки зуба h_f (на рис. обозначена a);
  • высота головки зуба h_a (на рис. обозначена b);
  • диаметр начальной окружности d_w (на рис. обозначен D);
  • угол зацепления \alpha (на рис. обозначен φ);
  • окружная толщина зуба st;
  • радиус кривизны переходной кривой в граничной точке профиля ρf.
Gear Circles.svg
  1. Изобразите начальную окружность (pitch circle) с диаметром D, и центром шестерни O. Окружность показана красным цветом.
  2. Изобразите окружность вершин зубьев (outside diameter) с центром в точке O с радиусом большим на высоту головки зуба(зелёного цвета).
  3. Изобразите окружность впадин зубьев (root diameter) с центром в точке O с радиусом меньшим на высоту ножки зуба (светло голубого цвета).
Unwin's Construction 2.svg
  1. Проведите касательную к начальной окружности (розовая).
  2. В точке касания под углом φ проведите линию зацепления (line of action), оранжевого цвета.
  3. Изобразите окружность касательную к линии зацепления, и центром в точке O. Эта окружность является основной (base circle) и показана тёмно голубого цвета.
Unwin's Construction 3.svg
  1. Отметьте точку A на окружности вершин зубьев.
  2. На прямой соединяющие точки A и O отметьте точку B находящуюся на основной окружности.
  3. Разделите расстояние AB на 3 части и отметьте, точкой C, полученное значение от точки A в сторону точки B на отрезке AB.
Unwin's Construction 4.svg
  1. От точки C проведите касательную к основной окружности.
  2. В точке касания отметьте точку D.
  3. Разделите расстояние DC на четыре части и отметьте, точкой E, полученное значение от точки D в сторону точки C на отрезке DC.
Unwin's Construction 5.svg
  1. Изобразите дугу окружности с центром в точке E, что проходит через точку C. Это будет часть одной стороны зуба, показана оранжевым.
  2. Изобразите дугу окружности с центром в точке C, радиусом, равным толщине зуба. Место пересечения с начальной окружностью (pitch circle) отметьте точкой F. Эта точка находится на другой стороне зуба.
Unwin's Construction 6.svg
  1. Изобразите скругление (fillet) между стороною зуба и окружностью впадин зубьев (root diameter).
  2. Изобразите радиус профиля зуба — дугу окружности радиусом EC из точки F (отмечено темно зеленым).
  3. Отметьте место пересечения радиуса профиля зуба с основной окружностью точкой G
Unwin's Construction 7.svg
  1. Изобразите радиус профиля зуба — дугу окружности радиусом EC из точки G — это другая сторона зуба.
  2. Добавьте скругление у основания зуба к окружности впадин зубьев (как в предыдущем шаге)
Unwin's Construction 8.svg
  1. Зуб готов. Наружная окружность между двумя боковыми поверхностями это вершина зуба.
  2. Повторите операцию для каждого зуба.

Перед построением эвольвентного зацепления необходимо рассчитать его геометрические параметры. Предположим, что даны числа зубьев колеса z_1 и шестерни z_2, указан тип зацепления: нулевое, равносмещенное или неравносмещенное. Сначала исходя из типа по таблицам или блокирующему контуру нужно выбрать коэффициенты смещения x_1 и x_2.

Стандартизация

В соответствии с принципом взаимозаменяемости ряд геометрических параметров эвольвентного зацепления стандартизован. В России зубчатые колёса выбирают по числу зубьев z и модулю m, принимая следующие параметры за постоянные (по ГОСТ 13755-81[4]):

  1. высота головок зуба h_a={h_a^*} \cdot m;
  2. глубина впадин h_f=({{h_a}^*}+c^*) \cdot m;
  3. подрезания нет, то есть x_1=x_2=0 или угол зацепления \alpha равен основному углу зацепления {\alpha}_w;
  4. угол зацепления {\alpha}=20 °;
  5. коэффициент высоты головки зуба {h_a^*}=1.0;
  6. коэффициент радиального зазора c^*=0.25.

В США и Великобритании вместо модуля используется питч p=25.4 / m, Питч - величина обратная модулю.

См. также

Примечания

  1. Теоретически эквивалентно качению без скольжения друг по другу двух окружностей которые называются начальными окружностями.
  2. Предложено в 1754 г. Леонардом Эйлером.
  3. Стоить отметить, что кроме эвольвентного зацепления, удовлетворяющему этому требованию, существует циклоидальное и круговое (Новикова) зацепление.
  4. ГОСТ 13755-81. Основные нормы взаимозаменяемости. Передачи зубчатые цилиндрические эвольвентные. Исходный контур

Wikimedia Foundation. 2010.