Четырёхтактный двигатель


Четырёхтактный двигатель
Работа четырёхтактного двигателя в разрезе. Цифрами обозначены такты

Четырёхтактный двигатель — поршневой двигатель внутреннего сгорания, в котором рабочий процесс в каждом из цилиндров совершается за два оборота коленчатого вала, то есть за четыре хода поршня (такта). Этими тактами являются:

  1. Впуск — (такт впуска, поршень идёт вниз) свежая порция топливо-воздушной смеси всасывается в цилиндр через открытый впускной клапан.
  2. Сжатие (такт сжатия, поршень идёт вверх) впускной и выпускной клапаны закрыты, и топливо-воздушная смесь сжимается в объёме.
  3. Рабочий ход (такт рабочего хода, поршень идёт вниз) сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз. Фактически на такте рабочего хода происходит работа двигателя.
  4. Выпуск (такт выпуска, поршень идёт вверх) на этом такте открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр.

По окончании 4-го такта всё повторяется в том же порядке.

Содержание

История

Цикл Отто

Идеализированный цикл Отто, показанный в координатах давление (Р) и объём (V):  такт впуска(A) , представляющий собой изобарическое расширение; за ним следует  такт сжатия (B) , представляющий собой адиабатический процесс. Далее следуют сжигание топлива, которое является изохорическим процессом, и адиабатическое расширение, характеризующие  такт рабочего хода (C) . Цикл завершается изохорическим процессом и изобарическим сжатием, характеризующими
 такт выпуска (D) . TDC — верхняя мёртвая точка; BDC — нижняя мёртвая точка

Четырёхтактный двигатель впервые был запатентован Алфоном де Роше (англ.) в 1861 году. До этого около 1854—1857 годов два итальянца (Евгенио Барсанти и Феличе Матоцци) изобрели двигатель, который, по имеющейся информации, мог быть очень похож на четырёхтактный двигатель, однако тот патент был утерян.

Первым человеком, реально построившим четырёхтактный двигатель, был немецкий инженер Николаус Отто. Вот почему четырёхтактный принцип сегодня известен, в основном, как цикл Отто, а четырёхтактный двигатель, использующий свечи зажигания, часто называется двигателем Отто.

Цикл Отто состоит из адиабатического сжатия, сообщения теплоты при постоянном объёме, адиабатического расширения и отдачи теплоты при постоянном объёме. В случае четырёхтактного цикла Отто имеется также изобарическое сжатие и изобарическое расширение, которые обычно не рассматриваются, так как в идеализированном процессе они не играют роли в сообщении рабочему газу теплоты или в совершении газом работы.

Это видеоролик о работе двигателя Отто. (2 мин 16 сек, 320×240, 340 кбит/с)

Октановое число топлива

Мощность на коленчатый вал двигателя внутреннего сгорания передаётся на вал от расширяющихся газов, в основном, во время такта рабочего хода. Сжатие топливо-воздушной смеси до очень малого объёма повышает эффективность рабочего хода, но увеличение степени сжатия в цилиндре также сильнее нагревает сжимающуюся топливо-воздушную смесь (согласно закону Шарля).

Если топливо легковоспламеняемое, с низкой температурой вспышки, то это может привести к возгоранию топливо-воздушной смеси до того, как поршень достигнет верхней мёртвой точки. Это, в свою очередь, будет заставлять поршень двигаться в сторону, противоположную требуемому направлению вращения коленчатого вала. Топливо, которое воспламеняется в верхней мёртвой точке, но до того, как поршень начнёт двигаться вниз, может повредить поршень и цилиндр из-за наличия в малом объёме очень большого количества тепловой энергии, не имеющей возможности выхода. Это повреждение часто проявляет себя как стук двигателя, и оно ведёт к перманентному повреждению двигателя, если случается постоянно.

Октановое число является мерой сопротивления топлива к самовоспламенению под воздействием возрастающих температур. Топлива с более высокими октановыми числами позволяют осуществлять более высокую степень сжатия без риска повреждения двигателя вследствие самовоспламенения.

Для работы дизельных двигателей самовоспламенение необходимо. Они предотвращают возможное повреждение двигателей путём раздельного впрыска топлива под большим давлением в цилиндр очень незадолго до того, как поршень достигнет верхней мёртвой точки. Воздух без топлива может быть сжат очень сильно без опасности самовоспламенения, и в то же время, находящееся под высоким давлением топливо в системе подачи топлива не может самовоспламениться без присутствия воздуха.

Факторы, ограничивающие мощность двигателя

Четырёхтактный цикл
1=верхняя мёртвая точка
2=нижняя мёртвая точка
 A: такт впуска 
 B: такт сжатия 
 C: такт рабочего хода 
  D: такт выпуска 

Максимальная мощность двигателя вырабатывается при максимальном количестве всасываемого воздуха. Мощность, вырабатываемая поршневым двигателем, связана с его размерами (объёмом цилиндра), объёмным КПД, потерь энергии, степени сжатия топливо-воздушной смеси, содержания кислорода в воздухе и частоты вращения. Это справедливо как для двухтактных, так и для четырёхтактных двигателей. Частота вращения в конечном счёте ограничена прочностью материалов и свойствами смазки. Клапана, поршни и коленчатые валы испытывают больши́е динамические нагрузки. На слишком высоких оборотах двигателя могут происходить физические повреждения и дрожание поршневых колец, и это приводит к потерям энергии и даже разрушению двигателя. Поршневые кольца колеблются вертикально в каналах, в которых они находятся. Эти колебания колец ухудшают уплотнение между кольцами и стенками цилиндра, что приводит к потерям давления в цилиндре и мощности. Если вал двигателя вращается слишком быстро, то пружины клапанов не успевают достаточно быстро срабатывать, и клапана не успевают закрываться. Эта ситуация называется "плаванием клапанов" (англ.), и она может привести к контакту поршня и клапанов, вызвав серьёзные повреждения. На высоких скоростях условия смазки на границе поверхностей поршня и цилиндра ухудшаются. Это ограничивает скорость поршней промышленных двигателей величиной около 10 м/с.

Потоки через впускной и выпускной каналы

Выходная мощность двигателя зависит от всасывающей способности, и от возможностей выхлопных газов быстро перемещаться через клапанные каналы, как правило расположенные в головках цилиндров (англ.). Для увеличения выходной мощности можно минимизировать количество изгибов тех каналов, по которым движутся всасываемые и выхлопные потоки, а также сделать их более плавными, благодаря чему уменьшится сопротивление этим потокам. Для этого радиусы поворотов клапанных каналов и сёдла клапанов можно модифицировать таким образом, чтобы их аэродинамическое сопротивление было минимальным. Можно, кроме того, использовать разделение потока на несколько частей.

Принудительное нагнетание воздуха в цилиндры

Один из путей увеличения мощности — это принудительное нагнетание дополнительного количества воздуха в цилиндры, благодаря чему при каждом рабочем ходе может вырабатываться больше мощности. Такое принудительное нагнетание может производиться некоторыми типами компрессорных устройств, называемых нагнетателями. Последние могут приводиться в движение от коленчатого вала или выхлопных газов.

Нагнетание повышает предел мощности двигателя внутреннего сгорания при том же самом объёме цилиндра. В общем случае, нагнетатель всегда работает, но есть конструкции, позволяющие отключать его, или позволяющие ему работать с разными скоростями (относительно скорости двигателя).

Недостатком механически осуществляемого нагнетания является то, что часть выходной мощности расходуется на приведение в движение нагнетателя. Воздух в цилиндре сжимается дважды, но расширяется только в один этап. Поэтому часть мощности понапрасну расходуется с выхлопами высокого давления.

Турбонагнетание

Турбонагнетатель или турбокомпрессор (ТК, ТН) — это такой нагнетатель, который приводится в движение выхлопными газами. Получил своё название от слова «турбина» (фр. turbine от лат. turbo — вихрь, вращение). Это устройство состоит из двух частей: роторного колеса турбины, приводимого в движение выхлопными газами, и центробежного компрессора, закреплённых на противоположных концах общего вала. Струя рабочего тела (в данном случае, выхлопных газов) воздействует на лопатки, закреплённые по окружности ротора, и приводит их в движение вместе с валом, который изготовляется единым целым с ротором турбины из сплава, близкого к легированной стали. На вале, помимо ротора турбины, закреплён ротор компрессора, изготовленный из алюминиевых сплавов, который при вращении вала позволяет «закачивать» под давлением воздух в цилиндры ДВС. Таким образом, в результате действия выхлопных газов на лопатки турбины одновременно раскручиваются ротор турбины, вал и ротор компрессора. Применение турбокомпрессора совместно с промежуточным охладителем (интеркулером) позволяет обеспечивать подачу более плотного воздуха в цилиндры ДВС (в современных турбированных двигателях используется именно такая схема). Часто при применении в двигателе турбокомпрессора говорят о турбине, не упоминая компрессора. Турбокомпрессор — это одно целое. Нельзя использовать энергию выхлопных газов для подачи воздушной смеси под давлением в цилиндры ДВС при помощи только турбины. Нагнетание воздуха обеспечивает именно та часть турбокомпрессора, которая именуется компрессором.

На холостом ходу, при небольших оборотах, турбокомпрессор вырабатывает небольшую мощность и приводится в движение малым количеством выхлопных газов. В этом случае турбонагнетатель малоэффективен, и двигатель работает примерно так же, как без нагнетания. Когда от двигателя требуется намного большая выходная мощность, то его обороты, а также зазор дросселя, увеличиваются. Пока количества выхлопных газов достаточно для вращения турбины, по впускному трубопроводу подаётся намного больше воздуха.

Турбонагнетание позволяет двигателю работать более эффективно, потому что турбонагнетатель использует энергию выхлопных газов, которая, в противном случае, была бы (большей частью) потеряна.

Однако существует технологическое ограничение, известное как «турбояма» («турбозадержка») (за исключением моторов с двумя турбокомпрессорами — маленьким и большим, когда на малых оборотах работает маленький ТК, а на больших — большой, совместно обеспечивая подачу необходимого количества воздушной смеси в цилиндры). Мощность двигателя увеличивается не мгновенно из-за того, что на изменение частоты вращения двигателя, обладающего некоторой инерцией, будет затрачено определённое время, а также из-за того, что чем больше масса турбины, тем больше времени потребуется на её раскручивание и создание давления, достаточного для увеличения мощности двигателя. Кроме того, повышенное выпускное давление приводит к тому, что выхлопные газы передают часть своего тепла механическим частям двигателя (эта проблема частично решается заводами-изготовителями японских и корейских ДВС путём установки системы дополнительного охлаждения турбокомпрессора антифризом).

Отношение длины шатуна к длине хода поршня

Более длинный шатун уменьшает боковые нагрузки со стороны поршня на стенки цилиндра, и уменьшает ударные нагрузки. Как следствие двигатель с длинным шатуном служит дольше, и он надёжнее. Однако увеличение длины шатуна ведёт к увеличению габаритов двигателя, его массы и стоимости. Кроме того, при возрастании длины шатуна увеличивается время нахождения поршня в верхней мёртвой точке. Как следствие, увеличивается время, в течение которого газ в цилиндре находится при высокой температуре, что ведёт к повышенному нагреву двигателя.

В настоящее время более актуальным параметром оценки ДВС является отношение хода поршня к диаметру цилиндра или наоборот. Для более быстроходных бензиновых двигателей это отношение близко к 1, на дизельных моторах ход поршня, как правило, чуть больше диаметра цилиндра.

Газораспределительный механизм

Клапаны обычно управляются через распределительный вал, вращающийся со скоростью, равной половине скорости коленчатого вала. Распределительный вал имеет несколько кулачковых механизмов, каждый из которых рассчитан так, чтобы открывать и закрывать «свой» клапан в определённое время цикла.

Во многих двигателях используются один или несколько распределительных валов, расположенных над рядом цилиндров (или над каждым рядом цилиндров). Помимо верхнего расположения распредвала часто встречается, казалось бы, забытое на легковых авто нижнее положение распредвала в блоке цилиндров. При этом кинематическая цепочка включает (снизу вверх) толкатели штанги и коромысла. Эта система, применение которой обусловлено простотой, надёжностью и компактностью, успешно себя зарекомендовала на грузовых автомобилях. Эта схема позволяет конструировать моторы с более низким центром тяжести.

Первая из описанных выше конструкций газораспределительного механизма обычно позволяет двигателям работать с бо́льшими скоростями, поскольку в этом случае имеется более короткая кинематическая цепь от кулачка к клапану.

Баланс энергии

Двигатели Отто имеют КПД около 35 % — иными словами, 35 % энергии, генерируемой при сжигании топлива, преобразуется в энергию вращательного движения выходного вала двигателя, а остальное теряется в виде тепла. Для сравнения: шеститактный двигатель может преобразовывать в полезную вращательную энергию более 50 % энергии, высвобождаемой при горении топлива.

Современные двигатели часто конструктивно имеют намеренно меньший КПД, чем они могли бы иметь. Это необходимо для уменьшения выбросов с помощью таких средств как система рециркуляции выхлопных газов и каталитический конвертер.

Уменьшению КПД можно препятствовать с помощью системы контроля двигателя (англ.), использующей технологии эффективного сжигания топлива.[1]


Top dead center, before cycle begins 1 — Intake stroke 2 — Compression stroke
Начальное положение, такт впуска и такт сжатия.
Fuel ignites 3 — Power stroke 4 — Exhaust stroke


Воспламенение топлива, рабочий ход и такт выпуска


Применение

Сегодня двигатели внутреннего сгорания в легковых и грузовых автомобилях, самолётах и во многих других машинах в большинстве случаев используют четырёхтактный цикл. Четырёхтактные двигатели могут быть как бензиновыми, так и дизельными.

Примечания

  1. Air pollution from motor vehicles By Asif Faiz, Christopher S. Weaver, Michael P. Walsh

Wikimedia Foundation. 2010.