- Устойчивость динамических систем
-
Содержание
Постановка задачи устойчивости динамических систем
Пусть Ω — область пространства
, содержащая начало координат,
, где
. Рассмотрим систему (1) вида:
При любых
существует единственное решение x(t, t0, x0) системы (1), удовлетворяющее начальным условиям x(t0, t0, x0) = x0. Будем предполагать, что решение x(t, t0, x0) определено на интервале
, причём
.
Устойчивость по Ляпунову
Тривиальное решение x = 0 системы (1) называется устойчивым по Ляпунову, если для любых
и ε > 0 существует δ > 0, зависящее только от ε и t0 и не зависящее от t, такое, что для всякого x0, для которого
, решение x системы с начальными условиями x(t0) = x0 продолжается на всю полуось t > t0 и удовлетворяет неравенству
.
Символически это записывается так:
Равномерная устойчивость по Ляпунову
Тривиальное решение x = 0 системы (1) называется равномерно устойчивым по Ляпунову, если δ из предыдущего определения зависит только от ε:
Неустойчивость по Ляпунову
Тривиальное решение x = 0 системы (1) называется неустойчивым по Ляпунову, если:
Асимптотическая устойчивость
Тривиальное решение x = 0 системы (1) называется асимптотически устойчивым, если оно устойчиво по Ляпунову и выполняется условие
для всякого x с начальным условием x0, лежащим в достаточно малой окрестности нуля.
Эквиасимптотическая устойчивость
Тривиальное решение x = 0 системы (1) называется эквиасимптотически устойчивым, если оно равномерно устойчивое и равномерно притягивающее.
Равномерная асимптотическая устойчивость
Тривиальное решение x = 0 системы (1) называется равномерно асимптотически устойчивым, если оно устойчивое и эквипритягивающее.
Асимптотическая устойчивость в целом
Тривиальное решение x = 0 системы (1) называется асимптотически устойчивым в целом, если оно устойчивое и глобальнопритягивающее.
Равномерная асимптотическая устойчивость в целом
Тривиальное решение x = 0 системы (1) называется равномерно асимптотически устойчивым в целом, если оно равномерно устойчивое и равномерно- и глобальнопритягивающее.
Wikimedia Foundation. 2010.