Радиорелейная связь


Радиорелейная связь
Башня радиорелейной связи

Радиореле́йная свя́зь (от англ. Relay — передавать, транслировать) — один из видов радиосвязи, образованной цепочкой приёмо-передающих (ретрансляционных) радиостанций. Наземная радиорелейная связь осуществляется обычно на деци- и сантиметровых волнах (от сотен мегагерц до десятков гигагерц).

По назначению радиорелейные системы связи делятся на три категории, каждой из которых на территории России выделены свои диапазоны частот:

  • местные линии связи от 0,39 ГГц до 40,5 ГГц
  • внутризоновые линии от 1,85 ГГц до 15,35 ГГц
  • магистральные линии от 3,4 ГГц до 11,7 ГГц

Данное деление связано с влиянием среды распространения на обеспечение надёжности радиорелейной связи. До частоты 12ГГц атмосферные явления оказывают слабое влияние на качество радиосвязи, на частотах выше 15ГГц это влияние становится заметным, а выше 40ГГц определяющим, кроме того, на частотах выше 40ГГц значительное влияние на качество связи оказывает затухание в атмосфере Земли.

Атмосферные потери, в основном, складываются из потерь в атомах кислорода и в молекулах воды. Практически полная непрозрачность атмосферы для радиоволн наблюдается на частоте 118.74 ГГц (резонансное поглощение в атомах кислорода), а на частотах больше 60 ГГц погонное затухание превышает 15 дБ/км. Ослабление в водяных парах атмосферы зависит от их концентрации и весьма велико во влажном теплом климате и доминирует на частотах ниже 45 ГГц.

Также отрицательно на радиосвязь влияют гидрометеоры, к которым относятся капли дождя, снег, град, туман и пр. Влияние гидрометеоров заметно уже при частотах больше 6 ГГц, а в неблагоприятных экологических условиях (при наличии в атмосферных осадках металлизированной пыли, смога, кислот или  щелочей) и на значительно более низких частотах.

Антенны соседних станций располагают в пределах прямой видимости (за исключением тропосферных станций). Для увеличения длины интервала между станциями антенны устанавливают как можно выше — на мачтах (башнях) высотой 10—100 м (радиус видимости — 40-50 км) и на высоких зданиях. Станции могут быть как стационарными, так и подвижными (на автомобилях).

Принципиальным отличием радиорелейной станции от иных радиостанций является дуплексный режим работы, то есть приём и передача происходят одновременно (на разных несущих частотах).

Протяженность наземной линии радиорелейной связи — до 10000 км, ёмкость — до нескольких тысяч каналов тональной частоты в аналоговых линиях связи, и до 622 мегабит в цифровых линиях связи. В общем случае, протяжённость и ёмкость (скорость передачи данных) находятся в обратно пропорциональной зависимости друг от друга: как правило, чем больше расстояние, тем ниже скорость, и наоборот.

В Российской Федерации для вновь вводимых магистральных радиорелейных линий связи определены скорости передачи, равные 155 Мбит/с (поток STM-1 синхронной цифровой иерархии, SDH) или 140 Мбит/с (поток Е4 плезиохронной цифровой иерархии, PDH, передаваемый в составе сигнала STM-1).

Содержание

История

В СССР начало развитию радиорелейной промышленности было положено в середине 50-х годов. Причиной для этого стала дешевизна радиорелейной связи по сравнению с кабельными линиями, особенно в условиях огромных пространств с неразвитой инфраструктурой и сложной геологической структурой местности. Первая магистральная радиорелейная система Р-600 (Р-600М, Р-600-МВ, «Рассвет-2») была создана в 1958 году. В 1970 году появился комплекс унифицированных радиорелейных систем «КУРС». Все это позволило в 60—70-е годы развить сеть связи страны, обеспечить качественную телефонию и наладить передачу программ центрального телевидения. К середине 70-х годов в стране была построена уникальная радиорелейная линия, протяжённость которой составляла около 10 тыс. км, емкостью каждого ствола равной 14400 каналов тональной частоты. Суммарная протяженность РРЛ в СССР превысила к середине 70-х годов 100 тыс. км.

Среди созданных радиорелейных линий связи можно назвать тропосферную радиорелейную линию связи «Север» (ТРРЛ «Север»).

C начала 90-х годов в России для построения сетей передачи данных начинают активно применятся цифровые радиорелейные станции плезиохронной цифровой иерархии и, позднее, синхронной цифровой иерархии в основном зарубежного производства.

Наиболее протяженные местные и внутризоновые сети передачи данных, основанные на РРЛ в настоящее время имеют операторы сотовой связи, такие как Билайн, МегаФон и МТС. Наиболее протяженные магистральные сети передачи данных, основанные на РРЛ принадлежат Ростелекому.


Принципы построения аппаратуры РРЛ

Аппаратура РРЛ строится обычно по модульному принципу. Функционально выделяют модуль стандартных интерфейсов, обычно включающих в себя один или несколько интерфейсов PDH (E1, E3), SDH (STM-1), Fast Ethernet или Gigabit Ethernet или сочетание перечисленных интерфейсов, а также интерфейсы управления и мониторинга РРЛ (RS-232 и др.) и интерфейсы синхронизации. Задача модуля стандартных интерфейсов заключается в коммутации интерфейсов между собой и другими модулями РРЛ. Конструктивно модуль стандартных интерфейсов может представлять собой один блок или состоять из нескольких блоков, устанавливаемых в единое шасси. В технической литературе модуль стандартных интерфейсов обычно называют блоком внутреннего монтажа (т.к. обычно подобный блок устанавливается в линейно-аппаратном зале или в телекоммуникационном вагончике). Потоки данных от нескольких стандартных интерфейсов объединяются в блоке внутреннего монтажа в единый кадр. Далее к полученному кадру добавляется служебные каналы, необходимые для управления и мониторинга РРЛ. Суммарно все потоки данных образуют радиокадр. Радиокадр от блока внутреннего монтажа как правило на промежуточной частоте передается к другому функциональному блоку РРЛ - радиомодулю. Радиомодуль выполняет помехоустойчивое кодирование радиокадра, модулирует радиокадр согласно используемому виду модуляции, а также преобразует суммарный поток данных с промежуточной частоты на рабочую частоту РРЛ. Кроме того часто радиомодуль выполняет функцию автоматической регулировки усиления мощности передатчика РРЛ. Конструктивно радиомодуль представляет собой один герметичный блок, имеющий один интерфейс, соединяющий радимодуль с блоком внутреннего монтажа. В технической литературе радиомодуль обычно называют блоком наружного монтажа, т.к. в большинстве случаев радиомодуль устанавливается на радиорелейной башне или мачте в непосредственной близости от антенны РРЛ. Расположение радиомодуля в непосредственной близости от антенны РРЛ обычно обусловлено стремлением уменьшить затухание высокочастотного сигнала в различных переходных волноводах (для частот больше 6 - 7 ГГц) или коаксиальных кабелях (для частот меньших 6 ГГц).

В устаревших на данный момент аналоговых РРЛ, а также магистральных цифровых РРЛ как блоки со стандартными интерфейсами, так и радиомодули обычно устанавливаются в линейно-аппаратном зале. Это связано с реализацией сложных схем резервирования N + 1, когда нет возможности расположить делитель мощности с одной антенны на несколько радиомодулей в непосредственной близости от антенны из-за громоздкости делителя мощности. В этом случае радиомодули и антенну соединяет волновод, проложенный от линейно-аппаратного зала до места крепления антенны на радиорелейной башне.

Так же распространен вид цифровых РРЛ, в котором конструктивно совмещается модуль стандартных интерфейсов и радиомодуль в виде одного герметичного блока, имеющего несколько стандартных интерфейсов, разъем питания и волноводный разъем для непосредственного крепления к антенне.


Конфигурации и методы резервирования

На наиболее важных направлениях с целью уменьшения неготовности интервалов РРЛ применяют различные методы резервирования оборудования РРЛ. Обычно конфигурации с резервированием оборудования РРЛ обозначают в виде суммы "N+M", где N обозначает общее количество стволов РРЛ, а M - количество зарезервированных стволов РРЛ. После суммы добавляют аббревиатуру HSB, SD ил FD, обозначающую метод резервирования стволов РРЛ.

Уменьшение коэффициента неготовности достигается с помощью дублирования функциональных блоков РРЛ или использованием отдельного резервного ствола РРЛ.

Конфигурация 1+0

Конфигурация оборудования РРЛ с одним стволом без резервирования.

Конфигурация N+0

Конфигурация оборудования РРЛ с N стволами без резервирования. Конфигурация N+0 представляет собой несколько частотных стволов РРЛ или стволов с разной поляризацией, работающих через одну антенну. В случае использования нескольких частоных стволов разделение стволов осуществляется с помощью делителя мощности и частотых полосовых фильтров. В случае использования стволов РРЛ с разной поляризацией разделение стволов осуществляется применением специальных антенн, поддерживающими прием и передачу сигналов с разными поляризациями (например, кроссполяризационных антенн, имеющих одинаковый коэффициент усиления для сигнала с горизонтальной и вертикальной поляризацией).

Конфигурация N+0 не обеспечивает резервирования РРЛ, каждый ствол представляет собой отдельный физический канал передачи данных. Данная конфигурация обычно используется для увеличения пропускной способности РРЛ. В оборудовании РРЛ отельные физические каналы передачи данных могут быть объединены в один логический канал.

Конфигурация N+1 HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и одним резервным стволом, находящимся в "горячем" резерве. Фактически резервирование достигиется путем дублирования всех или части функциональных блоков РРЛ. В случае выхода одного из блоков РРЛ из строя, блоки, находящиеся в "горячем" резерве замещаю неработоспособные блоки.

Конфигурация N+M HSB (Hot StandBy)

Конфигурация оборудования РРЛ с N стволами и M резервным стволом, находящимися в "горячем" резерве.

Конфигурация N+1 SD (Space Diversity)

Конфигурация N+M SD (Space Diversity)

Конфигурация N+1 FD (Frequency Diversity)

Конфигурация N+M FD (Frequency Diversity)

Кольцевая топологоя построения РРЛ

Построенные интервалов РРЛ по кольцевой топологии является одним из самых надежных способов резервирования, даже если все интервалы РРЛ в кольце работают в конфигурации 1+0. Тем не менне существуют несколько правил пострения кольцевой топологии интервалов РРЛ: количество пролетов в кольце должно быть не менее четырех, а также угол между соседними интервалами РРЛ должен быть больше 90° (с целью уменьшения влияния гидрометеоров на соседние интервалы РРЛ).

Как правило в реальных сетях, состоящей из интеравлов РРЛ, комбинируют различные методы резервирования с целью увеличения надежности сети.


Технологии, используемые в РРЛ

Цифровые РРЛ используются не только для организации PDH и SDH линий связи, а также для организации Ethernet линий со скоростью передачи до 2,5 Гбит/с связи без использования таких технилогий, как EoPDH, PoSDH. Передача Ethernet кадров без необходимости инкапсуляции их TDM кадры (потоки E1 или E3, фреймы SDH и т.п) возможна благодаря использованию пакетного радиокадра вместо TDM радиокадра в радиоканале. Согласно технологиям, используемым для организации радиокадров различают следующие виды цифровых РРЛ:

  • пакетные РРЛ
  • гибридные РРЛ
  • TDM РРЛ

К пакетным относят цифровые РРЛ с пакетным радиокадром. Для передачи TDM потоков используются псевдопроводные технологии передачи данных. За счет использования пакетного радиокадра возможно применение механизмов QoS над потоками данных, передаваемых через пакетные РРЛ. Так же, в пакетных РРЛ наиболее часто используется адаптивная модуляци, обычно сочетаемая с QoS.


Энергетические и качественные показатели

Основным документов для расчёта энергетических и качественных показателей РРЛ прямой видимости на территории России является ГОСТ-Р 53363-2009 "Цифровые радиорелейные линии. Показатели качества. Методы расчета".

ГОСТ-Р 53363-2009 основан на рекомендациях Сектора радиосвязи Международного союза электросвязи.


Перспективы развития

Перспективными направлениями развития РРЛ являются использование пакетной передачи в радиокадре, использование более сложных схем модуляции (QAM-256, QAM-512), а также использование более высоких несущих частот в диапазонах 70 - 80 ГГц.

Использование диапазона 70 - 80 ГГц позволяет оборудованию РРЛ использовать доступную для передачи полосу частот 100 МГц, что в свою очередь позволяет достичь пропускной способности 1 Гбит/c. Недостатком использования данного диаппазона является сильные затухания на гидрометеорах, ограничивающие дальность связи в зависимости от климатических факторов 2,5 — 5 км при коэффициенте неготовности 0,001%.

См. также



Wikimedia Foundation. 2010.