Электроника

Электроника
Различные электронные компоненты

Электро́ника (от греч. Ηλεκτρόνιο — электрон) — наука о взаимодействии электронов с электромагнитными полями и методах создания электронных приборов и устройств для преобразования электромагнитной энергии, в основном для передачи, обработки и хранения информации.[1]

Содержание

История

Возникновению электроники предшествовало изобретение радио. Поскольку радиопередатчики сразу же нашли применение (в первую очередь на кораблях и в военном деле), для них потребовалась элементная база, созданием и изучением которой и занялась электроника. Элементная база первого поколения была основана на электронных лампах. Соответственно получила развитие вакуумная электроника. Её развитию способствовало также изобретение телевидения и радаров, которые нашли широкое применение во время Второй мировой войны.

Но электронные лампы обладали существенными недостатками. Это прежде всего большие размеры и высокая потребляемая мощность (что было критичным для переносных устройств). Поэтому начала развиваться твердотельная электроника, а в качестве элементной базы стали применять диоды и транзисторы.

Дальнейшее развитие электроники связано с появлением компьютеров. Компьютеры, основанные на транзисторах, отличались большими размерами и потребляемой мощностью, а также низкой надежностью (из-за большого количества деталей). Для решения этих проблем начали применяться микросборки, а затем и микросхемы. Число элементов микросхем постепенно увеличивалось, стали появляться микропроцессоры. В настоящее время развитию электроники способствует также появление сотовой связи, а также различных беспроводных устройств, навигаторов, коммуникаторов, планшетов и т. п.

Основными вехами в развитии электроники можно считать:

Области электроники

Можно различать следующие области электроники:

  • физика (микромира, полупроводников, электромагнтитых волн, магнетизма, электрического тока и др.) — область науки, в которой изучаются процессы, происходящие с заряженными частицами,
  • бытовая электроника — бытовые электронные приборы и устройства, в которых используется электрическое напряжение, электрический ток, электрическое поле или электромагнитные волны.(Например телевизор, мобильный телефон, утюг, лампочка, электроплита,.. и др.).
  • Энергетика выработка, транспортировка и потребление электроэнергии, электро приборы высокой мощности (например электродвигатель, электрическая лампа, электростанция), электрическая система отопления,Линия Электропередачи.
  • Микроэлектроника - электронные устройства, в которых в качестве активных элементов используются микросхемы:
    • оптоэлектроника - устройства в которых используются электрический ток и потоки фотонов,
    • звуко-видео-техника - устройства усиления и преобразования звука и видео изображений,
    • цифровая микроэлектроника - устройства на микропроцесорах или логических микросхемах. Например: электронный калькулятор, компьютер, цифровой телевизор, мобильный телефон, принтер, робот, панель управления промышленным оборудованием, средствами транстпорта, и другие бытовые и промышленные устройства.

Электронное устройство может включать в себя самые разные материалы и среды, где происходит обработка электрического сигнала с использованием разных физических процессов. Но в любом устройстве обязательно имеется электрическую цепь.

Изучению различных аспектов электроники посвящены многие научные дисциплины технических вузов.


Твердотельная электроника

История твердотельной электроники

Термин Твердотельная электроника появился в литературе в середине XX века для обозначения устройств на полупроводниковой элементной базе: транзисторах и полупроводниковых диодах, заменивших громоздкие низкоэффективные электровакуумные приборы - радиолампы. Корень "тверд" использован здесь, потому что процесс управления электрическим током происходит в твердом теле полупроводника в отличие от вакуума, как это происходило в электронной радиолампе. Позднее, в конце XX столетия этот термин потерял свое значение и постепенно вышел из употребления, поскольку практически вся электроника нашей цивилизации начала использовать исключительно полупроводниковую твердотельную активную элементную базу.

Миниатюризация устройств

С рождением твердотельной электроники начался революционно быстрый процесс миниатюризации электронных приборов. За несколько десятков лет активные элементы уменьшились в десять миллиардов раз - с нескольких сантиметров электронной радиолампы до нескольких нанометров интегрированного на полупроводниковом чипе транзистора.

Технология получения элементов

Активные и пассивные элементы в твердотельной электронике создаются на однородном сверхчистом кристалле полупроводника, чаще всего кремния, методом инжекции или напыления новых слоев в определенных координатах тела кристалла атомов иных химических элементов, молекул более сложных, в том числе и органических веществ. Инжекция меняет свойства полупроводника в месте инжекции (легирования) меняя его проводимость на обратную, создавая таким образом диод или транзистор или пассивный элемент: резистор, проводник, конденсатор или катушку индуктивности, изолятор, теплоотводящий элемент и другие структуры. В последние годы широко распространилась технология производства источников света на кристалле. Огромное количество открытий и разработанных технологий использования твердотельных технологий еще лежат в сейфах патентообладателей и ждут. Технология получения полупроводниковых кристаллов, чистота которых позволяет создавать элементы размером в несколько нанометров стали называть нанотехнология, а раздел электроники - микроэлектроника.

В семидесятые годы, XX столетия в процессе миниатюризации твердотельной электроники в ней наметился раскол на аналоговую и цифровую микроэлектронику. В условиях конкуренции на рынке производителей элементной базы победу одержали производители цифровой электроники. И в XXI столетии производство и эволюция аналоговой электроники практически была остановлена. Так как в реальности все потребители микроэлектроники требуют от нее, как правило не цифровые, а непрерывные аналоговые сигналы или действия, цифровые устройства снабжены ЦАП-ами на своих входах и выходах. Миниатюризация электронных схем сопровождалась ростом быстродействия устройств. Так первые цифровые устройства ТТЛ технологии требовали микросекунды на переключение из одного состояния в другое и потребляли большой ток, требовавший специальных мер для отвода тепла.

В начале XXI века эволюция твердотельной электроники в направлении миниатюризации элементов постепенно приостановилась и в настоящее время практически остановлена. Эта остановка была предопределена достижением минимально возможных размеров транзисторов, проводников и других элементов на кристалле полупроводника еще способных отводить выделяемое при протекании тока тепло и не разрушаться. Эти размеры достигли единиц нанометров и поэтому технология изготовления микрочипов называется нанотехнологией. Следующим этапом в эволюции электроники возможно станет оптоэлектроника, в которой несущим элементом выступит фотон, значительно более подвижный, менее инерционный чем электрон/"дырка" в полупроводнике твердотельной электроники.


Основные твердотельные активные приборы, используемые в электронных устройствах:

  • Диод проводник с односторонней проводимостью от анода к катоду используется для выпрямления переменного тока;
  • Диод прибор с относительно стабильным пороговыми напряжениями анод-катод - стабилизатор напряжения, ограничитель напряжения;
  • Диод прибор с нелинейной зависимостью ток-напряжение как усилитель или генератор СВЧ электрических сигналов: туннельный диод, лавинно-пролетный диод, диод Ганна, диод Шотки;
  • Биполярные транзисторы - транзисторы с двумя физическими p-n-переходами, ток Коллектор-Эмиттер которого управляется током База-Эмиттер;
  • Полевой транзистор — транзистор, ток Исток-Сток которого управляется Напряжением на p-n- или n-p-переходе Затвор-Сток или потенциала на нем в транзисторах без физического перехода - с затвором, гальванически изолированным от канала Сток-Исток;
  • Диоды с управляемой проводимостью динисторы и тиристоры, используемые как переключатели, светодиоды и фотодиоды используемые как преобразователи э/м излучения в электрические сигналы или электрическую энергию или обратно;
  • Интегральная микросхема - комбинация активных и пассивных твердотельных

элементов на одном или нескольких кристаллах в одном корпусе, используемые как модуль, электронная схема в аналоговой и цифровой микроэлектронике.

Примеры использования твердотельных приборов в электронике:

  • Умножитель напряжения на выпрямительном диоде;
  • Умножитель частоты на нелинейном диоде;
  • Эмиттерный повторитель (напряжения)на биполярном транзисторе;
  • Коллекторный усилитель (мощности) на биполярном транзисторе;
  • Эмулятор индуктивности на интегральных микросхемах, конденсаторах и резисторах;
  • Преобразователь входного сопротивления на полевом или биполярном транзисторе, на интегральной микросхеме операционного усилителя в аналоговой и цифровой микроэлектронике;
  • Генератор электрических сигналов на полевом диоде, диоде Шотки, транзисторе или интегральной микросхеме в генераторах сигналов переменного тока;
  • Выпрямитель напряжения на выпрямительном диоде в цепях переменного электрического тока в разнообразных устройствах;
  • Источник стабильного напряжения на стабилитроне в стабилизаторах напряжения;
  • Источник стабильного напряжения на выпрямительном диоде в схемах смещения напряжения база-эмиттер биполярного транзистора;
  • Светоизлучающий элемент в осветительном приборе на светодиоде;
  • Светоизлучающий элемент в оптоэлектронике на светодиоде;
  • Светоприемный элемент в оптоэлектронике на фотодиоде;
  • Светоприемный элемент в солярных панелях солярных электростанций;
  • Усилитель мощности на биполярном или полевом транзисторе, на интегральной микросхеме Усилитель мощности в выходных каскадах усилителй мощности сигналов, переменного и постоянного тока;
  • Логический элемент на транзисторе, диодах или на интегральной микросхеме цифровой электроники;
  • Ячейка памяти на одном или нескольких транзисторах в микросхемах памяти;
  • Усилитель высоких частот на диоде;
  • Процессор цифровых сигналов на интегральной микросхеме цифрового микропроцессора;
  • Процессор аналоговых сигналов на тразисторах, интегральной микросхеме аналогового микропроцессора или на операционных усилителях;
  • Периферийные устройства компьютера на интегральных микросхемах или транзисторах;
  • Входной каскад операционного или дифференциального усилителя на транзисторе;
  • Электронный ключ в схемах коммутации сигналов на полевом транзисторе с изолированным затвором;
  • Электронный ключ в схемах с памятью на диоде Шотки;

Надёжность электронных устройств

Надёжность электронных устройств складывается из надёжности самого устройства и надёжности электроснабжения. Надёжность самого электронного устройства складывается из надёжности элементов, надёжности соединений, надёжности схемы и др. Графически надёжность электронных устройств отображается кривой отказов (зависимость числа отказов от времени эксплуатации). Типовая кривая отказов имеет три участка с разным наклоном. На первом участке число отказов уменьшается, на втором участке число отказов стабилизируется и почти постоянно до третьего участка, на третьем участке число отказов постоянно растёт до полной непригодности эксплуатации устройства.

См. также

Примечания

Литература



Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?
Синонимы:

Полезное


Смотреть что такое "Электроника" в других словарях:

  • Электроника-60 — Тип Промышленная микроЭВМ Выпущен ? Выпускался по …   Википедия

  • Электроника С5 — Электроника С5  серия советских управляющих микрокомпьютеров, разработанных конструкторским бюро при заводе «Светлана». Разработчики  А. В. Палагин, В. А. Иванов. Содержание 1 Электроника С5 01 2 Электроника С5 02 …   Википедия

  • Электроника 60 — Тип Промышленная микроЭВМ Выпущен ? Выпускался по ? Процессор М2 Память 4К слов при поставке, максимально адресуемая 32К сл …   Википедия

  • Электроника С5-01 — Электроника С5 серия советских управляющих микрокомпьютеров, разработанных конструкторским бюро при заводе «Светлана». Содержание 1 Электроника С5 01 2 Электроника С5 11 3 Электроника С5 21 …   Википедия

  • Электроника С5-11 — Электроника С5 серия советских управляющих микрокомпьютеров, разработанных конструкторским бюро при заводе «Светлана». Содержание 1 Электроника С5 01 2 Электроника С5 11 3 Электроника С5 21 …   Википедия

  • Электроника С5-21 — Электроника С5 серия советских управляющих микрокомпьютеров, разработанных конструкторским бюро при заводе «Светлана». Содержание 1 Электроника С5 01 2 Электроника С5 11 3 Электроника С5 21 …   Википедия

  • Электроника С5-31 — Электроника С5 серия советских управляющих микрокомпьютеров, разработанных конструкторским бюро при заводе «Светлана». Содержание 1 Электроника С5 01 2 Электроника С5 11 3 Электроника С5 21 …   Википедия

  • Электроника ИМ-23 — «Электроника ИМ 23. Автослалом»  электронная игра, одна из серии первых советских портативных электронных игр с жидкокристаллическим экраном, производимых под торговой маркой «Электроника». Все электронные микропроцессорные игры серии… …   Википедия

  • Электроника МК-85 — «Электроника» МК 85 Электроника МК 85  советский программируемый калькулятор (микрокомпьютер) со встроенным интерпретатором языка Бейсик. Разрабатывался в НИИТТ, главный конструктор  Л. Минкин, зам …   Википедия

  • Электроника-85 — Тип Персональный компьютер Выпущен 1985 Выпускался по Процессор КМ1831ВМ1 Память 512 Кбайт Устройства хран …   Википедия

  • Электроника ИМ-26 — Электроника ИМ 26  электронная игра из серии первых советских портативных электронных игр с жидкокристаллическим экраном, производимых под торговой маркой Электроника. Все электронные микропроцессорные игры серии Электроника имеют схожий… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»