pH-метр

pH-метр
PH Meter.jpg

pH-метр(произносится «пэ аш метр», английское произношение англ. pH-meter — piː'eɪtʃ «Пи эйч метр») — прибор для измерения водородного показателя (показателя pH), характеризующего концентрацию ионов водорода в растворах, питьевой воде, пищевой продукции и сырье, объектах окружающей среды и производственных системах непрерывного контроля технологических процессов, в том числе в агрессивных средах. В частности, pH-метр применяется для аппаратного мониторинга pH растворов разделения урана и плутония, где требования к корректности показаний аппаратуры без её калибровки чрезвычайно высоки.

Содержание

Схема и принцип действия

Действие pH-метра основано на измерении величины ЭДС электродной системы, которая пропорциональна активности ионов водорода в растворе — pH (водородному показателю). Измерительная схема по сути представляет собой вольтметр, проградуированный непосредственно в единицах pH для конкретной электродной системы (обычно измерительный электрод — стеклянный, вспомогательный — хлоросеребряный).

Входное сопротивление прибора должно быть очень высоким — входной ток не более 10-10А (у хороших приборов менее 10-12А), сопротивление изоляции между входами не менее 1011Ом, что обусловлено высоким внутренним сопротивлением зонда — стеклянного электрода. Это основное требование к входной схеме прибора.

Исторически, сначала ЭДС измерялась компенсационным методом с помощью потенциометра и чувствительного гальванометра. Когда схема в равновесии, ток через гальванометр не течет, и нагрузка на электроды не действует - по шкале потенциометра корректно отсчитывается ЭДС. Так же применялся метод с баллистическим гальванометром. Сначала от электродов заряжался конденсатор, затем он разряжался на рамку гальванометра, максимальное отклонение которой пропорционально заряду конденсатора, а следовательно - напряжению.

Далее появились приборы с входным усилителем на электронных лампах. Специальные ("электрометрические") лампы имеют ток утечки сетки порядка пикоампер, что позволяет получать большие входные сопротивление. Недостатком таких схем является большой дрейф и уход калибровки из-за неизбежного старения и изменения характеристик лампы.

Решить проблему дрейфа и одновременно высокого входного сопротивления позволили компенсационные схемы с усилителем, построенным по принципу модулятор - демодулятор. Механический ключ (вибропреобразователь) поочередно соединяет небольшой конденсатор с входом и цепью обратной связи. Если постоянные напряжения на них отличаются, то через конденсатор протекает небольшой переменный ток, который создаст переменное напряжение на сеточном резисторе входной лампы. Далее пульсации усиливаются несколькими каскадами, и поступают на фазочувствительный демодулятор (в простейшем случае - такой же вибропреобразователь, электромагнит которого включен параллельно электромагниту первого). На выходе получается напряжение, пропорциональное разности напряжений на входе. Цепь обратной связи (резистивный делитель) задает общий коэффициент усиления, стремясь поддерживать на входе усилителя нулевую разность напряжений. Эта схема практически лишена дрейфа, усиление мало зависит от степени износа ламп. Снижается требования к самим лампам - вместо дорогих электрометрических можно применять массовые приемно-усилительные лампы. Так работает, например, отечественный прибор pH-340.

В более поздних моделях вместо контактного преобразователя применялся динамический конденсатор, позднее ключ на фотосопротивлении, освещаемом импульсами света (например иономер ЭВ-74), а лампы на входе сменились полевыми транзисторами.

В настоящее время большинство прецизионных операционных усилителей с входом на полевых МОП-транзисторах, и даже простейшие АЦП удовлетворяют требованиям по входному сопротивлению.

Так как ЭДС электродной системы сильно зависит от температуры, то важной является схема термокомпенсации. Изначально применялись медные термометры сопротивления, включенные в сложные мостовые схемы обратной связи, или потенциометр со шкалой в градусах, ручкой которого устанавливали значение температуры, измеренное ртутным термометром. Такие схемы имеют большое число подстроечных резисторов и крайне сложны в настройке и калибровке. Сейчас датчик температуры работает на отдельный АЦП, все необходимые корректировки вносит микроконтроллер.

Примерная зависимость напряжения от pH (для системы со стеклянным и хлорсеребряным электродами) следующая.

  • Большинство современных стеклянных электродов делают так, что бы в паре с хлорсеребрянным ЭДС была примерна равна нулю при pH = 7, то есть в нейтральной среде.
  • При основном (щелочном) pH, (но, обычно, не более 14 - предел для стеклянных электродов) напряжение на выходе датчика варьируется от 0 до -0,41В ((14-7)* -0,059 = -0,41). Например, pH 10 (на 3 ед. выше нейтрального), (10-7) * -0,059 = -0,18В).
  • При кислотном pH, напряжение на выходе датчика колеблется от 0 до +0,41В. Так, например, pH 4 (3 ед. ниже нейтрального), (3-7)* -0,059 = +0,18В.

Две главные настройки выполняются при калибровке по буферным растворам с точно известным значением pH — устанавливается крутизна усиления и смещение нуля. Так же настраивается так называемая изопотенциальная точка (pHи, Eи) - значение pH и соответствующая ему ЭДС, при которых ЭДС системы не зависит от температуры. Современные электродные системы (за исключением специальных электродов для сильных кислот и щелочей) делают с изопотенциальной точкой около pH = 7 и ЭДС в пределах +/- 50мВ. Эти характеристики указываются для каждого типа стеклянного электрода.

Требования к электроду

В конце 1940-х — начале 1950-х годов оборонный заказ явился стимулом интенсивных исследований в области измерительной аппаратуры такого рода. Обусловлено это было, в числе прочих причин, и тем, что особая роль в контроле реакций при различных химических процессах отводится приборам, от точности показаний которых напрямую зависит корректность всей технологической цепи; в наибольшей степени, конечно, во вредных производствах, когда снятие показаний состояния среды, либо представляет опасность для здоровья, либо вообще технически невозможно (агрессивная среда, высокие температуры и давление, процессы, требующие изоляции и т. д.).

Так. при ядерном синтезе и формировании оружейного плутония первостепенное значение имеет выраженное количественно понимание структуры и свойств материалов, влияющих на функции и обратимость сделанных из них стеклянных электродов — как уже отмечено, важнейших элементов этой измерительной аппаратуры.

В 1951 году физикохимиком М. М. Шульцем первым термодинамически строго и экспериментально была доказана натриевая функция различных стёкол в разных областях pH, являвшаяся одной из ключевых гипотез ионообменной теории стеклянного электрода Б. П. Никольского. Это стало определяющим этапом на пути к промышленной технологии настоящих приборов, — формированию ионометрии со стеклянными, позднее — с мембранными электродами, что позволило организовать их массовое производство и сделало доступным для использования в любых лабораторных и производственных условиях [1]. Производство первых образцов этой категории аналитической аппаратуры было налажено при участии Тбилисского СКБ «Аналитприбор» в лице его сотрудников В. А. Долидзе, Г. А. Симоняна и др., московских исследователей В. П. Юхновского, А. С. Беневольского и др., харьковских учёных В. В. Александрова, Н. А. Измайлова, — на Гомельском заводе измерительных приборов в 1959 году; и с того времени к 1967 году выпуск электродов стеклянных и вспомогательных — промышленного и лабораторного назначения, вырос с 1,5 тысяч почти до 2 миллионов штук. Количество электродного стекла всех типов, сваренного на заводе за этот же период выросло с 1 тысячи кг более чем до 200 тысяч кг.

Развитие, расширение производства электродного стекла сделало доступной эту аналитическую аппаратуру.

Области и методы применения

Прибор может использоваться во многих производствах, где необходим контроль среды, универсальным показателем состояния которой и соответствия её требуемым — является pH: при высокотехнологичном производстве всех видов горючего, в фармакологической, косметической, лакокрасочной, химической, пищевой промышленности и мн. др.; pH-метры имеют широкое применение в научно-исследовательской практике химиков, микробиологов и почвоведов, агрохимиков, в лабораториях стационарных и передвижных, в том числе полевых, а также клинико-диагностических (для контроля физиологических норм и диагностики), судебно-медицинских. Последнее время pH-метры также широко используются в аквариумных хозяйствах, для контроля качества воды в бытовых условиях, в земледелии (особенно в гидропонике).

Медицинский pH-метр, применяемый для измерения кислотности непосредственно в полых органах человека, называется ацидогастрометр.

Примечания

  1. Шульц М. М. Исследование натриевой функции стеклянных электродов. Учёные записки ЛГУ № 169. Серия химических наук № 13. 1953. стр. 80—156

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "pH-метр" в других словарях:

  • Метр (значения) — Метр (τό μέτρον, мерило, единица измерения, критерий): метр, мер  окончание сложных названий измерительных приборов: амперметр, ареометр, одометр и т. п. Метр  единица измерения длины в системе СИ. Метр  основание… …   Википедия

  • метр — 1. МЕТР, а; м. [от греч. metron мера] 1. Основная единица длины в современной системе измерений, равная ста сантиметрам. Доска в шесть метров длины. Ширина дороги пять метров. Высота Исаакиевского собора 101 метр. 2. Линейка, лента такой длины с… …   Энциклопедический словарь

  • Метр (стихи) — Метр (греч. το μέτρον, мера), структурная единица стиха, группа стоп, объединённая иктом, главным ритмическим ударением. Метр бывает односложным и двусложным. В анапестических, трохеических и ямбических стихах метр обычно бывает двусложный,… …   Википедия

  • МЕТР — (греч. мера). 1) стопа в стихе, а также размер ритмического движения в музыке. 2) французская мера длины, десятимиллионная часть четверти земной окружности = 1 арш. и 2,5 верш. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А …   Словарь иностранных слов русского языка

  • Метр (стихотворный) — Метр (греч. το μέτρον, мера), структурная единица стиха, группа стоп, объединённая иктом, главным ритмическим ударением. Метр бывает односложным и двусложным. В анапестических, трохеических и ямбических стихах метр обычно бывает двусложный,… …   Википедия

  • МЕТР — (греч. metron мера) 1) основная единица длины СИ.2) мера длины, воспроизводящая единицу длины метр. Согласно определению, принятому 17 й Генеральной конференцией по мерам и весам (1983), метр длина пути, проходимого светом в вакууме за 1/299 792… …   Большой Энциклопедический словарь

  • МЕТР — 1. МЕТР1, метра, муж. (греч. metron мера). Международная единица длины, равная одной сорокамиллионной части меридиана. Метр равен 1,4061 аршина. Метр содержит сто сантиметров. Кубический метр. Комната в 10 квадратных метров. || Металлическая,… …   Толковый словарь Ушакова

  • МЕТР — 1. МЕТР1, метра, муж. (греч. metron мера). Международная единица длины, равная одной сорокамиллионной части меридиана. Метр равен 1,4061 аршина. Метр содержит сто сантиметров. Кубический метр. Комната в 10 квадратных метров. || Металлическая,… …   Толковый словарь Ушакова

  • МЕТР — 1. МЕТР1, метра, муж. (греч. metron мера). Международная единица длины, равная одной сорокамиллионной части меридиана. Метр равен 1,4061 аршина. Метр содержит сто сантиметров. Кубический метр. Комната в 10 квадратных метров. || Металлическая,… …   Толковый словарь Ушакова

  • метр — 1. МЕТР1, метра, муж. (греч. metron мера). Международная единица длины, равная одной сорокамиллионной части меридиана. Метр равен 1,4061 аршина. Метр содержит сто сантиметров. Кубический метр. Комната в 10 квадратных метров. || Металлическая,… …   Толковый словарь Ушакова

  • метр — 1. МЕТР1, метра, муж. (греч. metron мера). Международная единица длины, равная одной сорокамиллионной части меридиана. Метр равен 1,4061 аршина. Метр содержит сто сантиметров. Кубический метр. Комната в 10 квадратных метров. || Металлическая,… …   Толковый словарь Ушакова


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»