Радиус Шварцшильда

Радиус Шварцшильда

Гравитацио́нный ра́диус (или ра́диус Шва́рцшильда) в Общей теории относительности (ОТО) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий, создаваемый этой массой, если бы она была распределена сферически-симметрично, была бы неподвижной (в частности, не вращалась), и целиком лежала бы внутри этой сферы.

По величине гравитационный радиус в ОТО совпадает с радиусом сферически-симметричного тела, для которого в классической механике вторая космическая скорость на поверхности была бы равна скорости света. На важность этой величины впервые обратил внимание Джон Мичелл в своём письме к Генри Кавендишу, опубликованном в 1784 году. В рамках ОТО гравитационный радиус впервые вычислил в 1916 году Карл Шварцшильд (см. метрика Шварцшильда).

Гравитационный радиус пропорционален массе тела m и равен rg = 2Gm / c2, где Gгравитационная постоянная, сскорость света в вакууме. Это выражение можно записать как r_g \approx 1,\!48 \times 10^{-27}\,m\,, где rg измеряется в метрах, а m — в килограммах. Для астрофизики удобной является запись r_g \approx 2,\!95 (m / M_\odot) км, где M_\odot — масса Солнца.

Гравитационный радиус обычных астрофизических объектов ничтожно мал по сравнению с их действительным размером; так, для Земли rg = 8,84 мм, для Солнца rg = 2,95 км. Исключение составляют нейтронные звёзды и гипотетические кварковые звёзды. Например, для типичной нейтронной звезды радиус Шварцшильда составляет около 1/3 от её собственного радиуса. Это обусловливает важность эффектов ОТО при изучении таких объектов.

Если тело сжать до размеров гравитационного радиуса, то никакие силы не смогут остановить его дальнейшего сжатия под действием сил тяготения. Такой процесс, называемый релятивистским гравитационным коллапсом, может происходить с достаточно массивными звёздами (как показывает расчёт, с массой больше двух солнечных масс) в конце их эволюции: если, исчерпав ядерное «горючее», звезда не взрывается и не теряет массу, то, сжимаясь до размеров гравитационного радиуса, она должна испытывать релятивистский гравитационный коллапс. При гравитационном коллапсе из-под сферы радиуса rg не может выходить никакое излучение, никакие частицы. С точки зрения внешнего наблюдателя, находящегося далеко от звезды, с приближением размеров звезды к rg время неограниченно замедляет темп своего течения. Поэтому для такого наблюдателя радиус коллапсирующей звезды приближается к гравитационному радиусу асимптотически, никогда не становясь меньше его.

Физическое тело, испытавшее гравитационный коллапс, как и тело, радиус которого меньше его гравитационного радиуса, называется чёрной дырой. Сфера радиуса rg совпадает с горизонтом событий невращающейся чёрной дыры. Для вращающейся чёрной дыры горизонт событий имеет форму эллипсоида, и гравитационный радиус даёт оценку его размеров. Радиус Шварцшильда для сверхмассивной чёрной дыры в центре Галактики равен примерно 16 миллионам километров[1]. Радиус Шварцшильда сферы, равномерно заполненной веществом с плотностью, которая равна критической плотности, совпадает с радиусом наблюдаемой Вселенной.

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Полезное


Смотреть что такое "Радиус Шварцшильда" в других словарях:

  • РАДИУС ШВАРЦШИЛЬДА — РАДИУС ШВАРЦШИЛЬДА, критический радиус, при котором массивное тело под влиянием своего собственного ПРИТЯЖЕНИЯ становится ЧЕРНОЙ ДЫРОЙ. Это радиус «ГОРИЗОНТА СОБЫТИЙ» черной дыры, из которого ничто не может вырваться, даже свет. Этот радиус… …   Научно-технический энциклопедический словарь

  • ШВАРЦШИЛЬДА ПРОСТРАНСТВО-ВРЕМЯ — пространство время вне массивного невращающегося тела в вакууме (тензор Риччи Rik = 0). Элемент длины ds определяется выражением где r,q, f сферические координаты с центром в центре массивного тела, M масса тела. Это решение ур ний Эйнштейна… …   Физическая энциклопедия

  • ШВАРЦШИЛЬДА МЕТРИКА — метрика четырехмерного псевдориманова пространства, к рая может быть приведена к виду где rg и с константы. Ш. м. состоит из двух связных компонент: первая из них (r>rg) наз. внешней Ш. м., вторая (r<rg) внутрeнней Ш. м. В общей теории… …   Математическая энциклопедия

  • Решение Шварцшильда — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности …   Википедия

  • Метрика Шварцшильда —     Общая теория относительности …   Википедия

  • Гравитационный радиус — (или радиус Шварцшильда) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы в яркостных координатах, на которой находился бы горизонт событий, создаваемый этой массой в общей… …   Википедия

  • Пространство Шварцшильда — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности …   Википедия

  • Чёрная дыра — У этого термина существуют и другие значения, см. Чёрная дыра (значения). Изображение, полученное с помощью телескопа «Хаббл»: Активная галактика M87. В ядре галактики, предположительно, находится чёрная дыра. На сни …   Википедия

  • Квантовая чёрная дыра — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности …   Википедия

  • Квантовые черные дыры — Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»