Генератор сигналов


Генератор сигналов

Генератор сигналов — это устройство, позволяющее получать сигнал определённой природы (электрический, акустический или другой), имеющий заданные характеристики (форму, энергетические или статистические характеристики и т. д.). Генераторы широко используются для преобразования сигналов, для измерений и в других областях. Состоит из источника (устройства с самовозбуждением, например усилителя охваченного цепью положительной обратной связи) и формирователя (например, электрического фильтра)

Содержание

Генераторы электрических колебаний

Существуют также генераторы более сложных сигналов, таких, как телевизионная испытательная таблица

Большинство генераторов являются преобразователями постоянного тока в переменный ток. Маломощные генераторы строят на однотактных усилительных каскадах. Более мощные однофазные генераторы строят на двухтактных (полумостовых) усилительных каскадах, которые имеют больший КПД и позволяют на транзисторах той же мощности построить генератор с приблизительно вдвое большей мощностью. Однофазные генераторы ещё большей мощности строят по четырёхтактной (полномостовой) схеме, которая позволяет приблизительно ещё вдвое увеличить мощность генератора. Ещё большую мощность имеют двухфазные и трёхфазные двухтактные (полумостовые) и четырёхтактные (полномостовые) генераторы.

Генераторы гармонических колебаний

Блок схема генератора

Генератор (производитель) гармонических колебаний представляет собой усилитель с положительной обратной связью. Усилитель с отрицательной обратной связью является дискриминатором (подавителем, активным фильтром). Усилитель генератора может быть как однокаскадным, так и многокаскадным.

Типовой график зависимости амплитуды выходного сигнала генератора от частоты
LC-генератор с перекрёстными связями на кольце из двух инверторов

Цепи положительной обратной связи выполняют две функции: сдвиг сигнала по фазе для получения петлевого сдвига близкого к n*2π и фильтра, пропускающего нужную частоту. Функции сдвига фазы и фильтра могут быть распределены на две составные части генератора — на усилитель и на цепи положительной обратной связи или целиком возложены на цепи положительной обратной связи. В цепи положительной обратной связи могут стоять усилители.

Необходимыми условиями для возникновения гармонических незатухающих колебаний являются:
1. петлевой сдвиг фазы равный n*360°±90°,
2. петлевое усиление >1,
3. рабочая точка усилительного каскада в середине диапазона входных значений.
Необходимость третьего условия.
Петлевой сдвиг фазы и в триггере и в генераторе равен около 360°. Петлевое усиление в триггере почти вдвое больше, чем в генераторе, но триггер не генерирует, так как рабочие точки каскадов в триггере смещены на края диапазона входных значений и эти состояния в триггере устойчивы, а состояние со средней величиной входных значений — неустойчиво. Такой характеристикой обладает компаратор.
В гармоническом генераторе среднее состояние устойчивое, а отклонения от среднего состояния неустойчивые.

История

В 1887 году Генрих Герц на основе катушки Румкорфа изобрёл и построил искровой генератор электромагнитных волн.

В 1913 году Александр Мейснер (Германия) изобрёл электронный генератор Мейснера на ламповом каскаде с общим катодом с колебательным контуром в выходной (анодной) цепи с трансформаторной положительной обратной связью на сетку.[4]

В 1914 году Эдвин Армстронг (США) запатентовал электронный генератор на ламповом каскаде с общим катодом с колебательным контуром во входной (сеточной) цепи с трансформаторной положительной обратной связью на сетку.

В 1915 году американский инженер из Western Electric Company Ральф Хартли, разработал ламповую схему известную как генератор Хартли, известную также как индуктивная трёхточечная схема («индуктивная трёхточка»). В отличие от схемы А. Мейсснера, в ней использовано автотрансформаторное включение контура. Рабочая частота такого генератора обычно выше резонансной частоты контура.

В 1919 году Эдвин Колпитц изобрёл генератор Колпитца на электронной лампе с подключением к колебательному контуру через ёмкостной делитель напряжения, часто называемый «ёмкостная трёхточка».

В 1932 году американец Гарри Найквист разработал теорию устойчивости усилителей, которая также применима и для описания устойчивости генераторов. (Критерий устойчивости Найквиста-Михайлова).

Позже было изобретено множество других электронных генераторов.

Устойчивость генераторов

Устойчивость генераторов складывается из двух составляющих: устойчивость усилительного каскада по постоянному току и устойчивость генератора по переменному току.

Фазовый анализ генератора Мейснера

Генераторы «индуктивная трёхточка» и «ёмкостная трёхточка» могут быть построены как на инвертирующих каскадах (с общим катодом, с общим эмиттером), так и на неинвертирующих каскадах (с общей сеткой, с общим анодом, с общей базой, с общим коллектором).

Каскад с общим катодом (с общим эмиттером) сдвигает фазу входного сигнала на 180°. Трансформатор, при согласном включении обмоток, сдвигает фазу ещё на приблизительно 180°. Суммарный петлевой сдвиг фазы составляет приблизительно 360°. Запас устойчивости по фазе максимален и равен почти ± 90°. Таким образом генератор Мейснера относится, с точки зрения теории автоматического управления (ТАУ), к почти идеальным генераторам. В транзисторной технике каскаду с общим катодом соответствует каскад с общим эмиттером.

Фазовый анализ LC-генератора с СR положительной обратной связью

Colpitts ob.jpg
Fazowaja diagramma2.jpg

LC-генераторы на каскаде с общей базой наиболее высокочастотны, применяются в селекторах каналов почти всех телевизоров, в гетеродинах УКВ приёмников. Для гальванической развязки в цепи положительной обратной связи с коллектора на эмиттер стоит CR-цепочка, которая сдвигает фазу на 60°. Генератор работает, но не на частоте свободных колебаний контура, а на частоте вынужденных колебаний, из-за этого генератор излучает две частоты: большую — на частоте вынужденных колебаний и меньшую на частоте свободных колебаний контура. При первой итерации две частоты образуют четыре: две исходные и две суммарноразностные. При второй итерации четыре частоты производят ещё большее число суммарноразностных частот. В результате, при большом числе итераций получается целый спектр частот, который в приёмниках смешивается с входным сигналом и образует ещё большее число суммарноразностных частот. Затем всё это подаётся в блок обработки сигнала. Кроме этого, запас устойчивости работы по фазе этого генератора составляет +30°. Чтобы уменьшить шунтирование контура каскадом применяют частичное включение контура через ёмкостной делитель, но при этом происходит дополнительный перекос фазы. При одинаковых ёмкостях дополнительный перекос фазы составляет 45°. Суммарный петлевой сдвиг фазы 60°+45°=105° оказывается больше 90° и устройство попадает из области генераторов в область дискриминаторов, генерация срывается. При оптимально рассчитанном емкостном делителе запас устойчивости по фазе составляет менее 30°.

Генератор Мейснера на каскаде с общей базой, с частичным включением контура без перекоса фазы.

Meisner bez perekosa fazy.jpg
Fazowaja diagramma1.jpg

Если в «ёмкостной трёхточке» на каскаде с общей базой в цепи положительной обратной связи вместо CR-цепочки включить трансформатор со встречным включением обмоток, то петлевой сдвиг фазы составит около 360°. Генератор станет почти идеальным. Чтобы уменьшить шунтирование контура каскадом и не внести дополнительного перекоса фазы, нужно применить частичное включение контура без дополнительного перекоса фазы через два симметричных отвода от катушки индуктивности. Такой генератор излучает одну частоту и имеет наибольший запас устойчивости по фазе (± 90°).

Применение

Далеко не полный список устройств, в которых применяются генераторы сигналов:

См. также

Примечания

  1. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm На рис.8.1.а) изображён генератор Мейснера, а не генератор Хартлея
  2. http://radiomaster.ru/stati/radio/gen.php Рис.1.7 RC-генератор на транзисторе. Рис.1.8 RC-генератор с мостом Вина.
  3. http://logic-bratsk.ru/radio/ewb/ewb2/CHAPTER2/2-8/2-8-1/2-8-1.htm Рис.8.9. RC-генератор с трёхзвенной фазосдвигающей цепочкой (а) и осциллограмма выходного сигнала (б)
  4. http://historic.ru/books/item/f00/s00/z0000027/st054.shtml Радиотехника и радиофизика

Ссылки


Wikimedia Foundation. 2010.

Смотреть что такое "Генератор сигналов" в других словарях:

  • генератор сигналов — [IEV number 151 13 73] EN signal generator apparatus or device for the production of electric signals of specified and usually adjustable characteristics Source: 702 09 28 MOD [IEV number 151 13 73] FR générateur de signaux, m… …   Справочник технического переводчика

  • генератор сигналов — signalų generatorius statusas T sritis automatika atitikmenys: angl. signal generator vok. Meßsender, m; Signalgenerator, m rus. генератор сигналов, m; сигнал генератор, m pranc. générateur de signaux, m …   Automatikos terminų žodynas

  • генератор сигналов — signalų generatorius statusas T sritis Standartizacija ir metrologija apibrėžtis Generatorius, kuriantis įvairių parametrų signalus. atitikmenys: angl. signal generator vok. Signalgenerator, m; Signaloszillator, m rus. генератор сигналов, m;… …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • генератор сигналов — signalų generatorius statusas T sritis fizika atitikmenys: angl. signal generator vok. Signalgenerator, m; Signaloszillator, m rus. генератор сигналов, m; сигнальный генератор, m pranc. générateur des signaux, m …   Fizikos terminų žodynas

  • генератор сигналов (заданной формы) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN waveform generator …   Справочник технического переводчика

  • генератор сигналов для измерительных целей — [IEV number 312 02 41] EN signal generator (for measuring purposes) source of electrical signals, whose characteristics (waveform, frequency, voltage, etc.) can be fixed, or controlled within specified limits [IEV number 312 02 41] FR… …   Справочник технического переводчика

  • генератор сигналов с амплитудной модуляцией — [IEV number 313 07 01] EN amplitude modulated signal generator source of amplitude modulated signals, the frequency, voltage and modulation factor of which can be fixed, or controlled within specified limits [IEV number 313 07 01] FR… …   Справочник технического переводчика

  • генератор сигналов с импульсной модуляцией — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN pulsed generator …   Справочник технического переводчика

  • генератор сигналов с частотной модуляцией — [IEV number 313 07 02] EN frequency modulated signal generator source of frequency modulated signals, the frequency, voltage and frequency deviation of which can be fixed, or controlled within specified limits [IEV number 313 07 02] FR… …   Справочник технического переводчика

  • генератор сигналов изображения — vaizdo signalų generatorius statusas T sritis automatika atitikmenys: angl. image signals generator vok. Bildsignalgenerator, m rus. генератор сигналов изображения, m pranc. générateur de signaux d image, m …   Automatikos terminų žodynas

Книги

Другие книги по запросу «Генератор сигналов» >>


We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.