Электромагнитный ускоритель с изменяемым удельным импульсом

Электромагнитный ускоритель с изменяемым удельным импульсом

Электромагнитный ускоритель с изменяемым удельным импульсом

VASIMR на испытательном стенде

Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket, VASIMR™) - электромагнитный плазменный ускоритель, предназначен для реактивного ускорения КА. Реактивный двигатель использует радиоволны для ионизации рабочего тела с последующим разгоном полученной плазмы с помощью электромагнитного поля для получения тяги.

Метод нагрева плазмы, используемый в VASIMR, изначально был разработан в результате исследования в области термоядерного синтеза. Цель разработки VASIMR заполнить разрыв между высокоэффективными реактивными системами малой тяги с высоким удельным импульсом и низкоэффективными системами большой тяги с низким удельным импульсом. VASIMR способен работать в режимах близким к системам большой тяги и малой. Концепция двигателя предложена учёным и бывшим астронавтом Франклином Чанг-Диазом из Коста-Рики в 1979 г, продолжая развитие до нынешних дней (2010 г).

Содержание

Основной проект

VASIMR, иногда рассматриваемый как Электротепловой Плазменный Ускоритель (ЭПУ), использует радиоволны для ионизации и нагрева рабочего тела и электромагнитные поля для ускорения плазмы для получения ускорения. Этот тип двигателя можно рассматривать как вариацию безэлектродного плазменного ускорителя, отличающегося в способе ускорения плазмы. Оба типа двигателя не имеют никаких электродов. Основное преимущество такого проекта в исключении проблемы эрозии электродов. Более того, так как все части VASIMR защищены магнитным полем и не приходят в прямой контакт с ионизированной плазмой, потенциальная продолжительность эксплуатации двигателя, построенного по такому проекту, гораздо выше ионного двигателя.

Проект включает в себя три части 1) превращение газа в плазму с использованием радиоволновых антенн; 2) возбуждение плазмы с помощью дальнейшего нагрева в ускорителе; 3) использование электромагнитов для создания магнитного сопла, которое конвертирует полученную тепловую энергию плазмы в кинетическую энергию реактивной струи. Изменяя количество энергии на радиоволновый разогрев и количество рабочего тела, направленного на создание плазмы, VASIMR способен как производить малую тягу с высоким удельным импульсом, так и относительно высокую тягу с низким удельным импульсом.

Диаграмма VASIMR

Следует отметить, что в отличие от обычных циклотронно-резонансных нагревающих процессов, ионы в VASIMR сразу же проходят через магнитное сопло быстрее времени, необходимого для достижения термодинамического равновесия. Основываясь на новаторской теоретической работе 2004 года Арефьева (Arefiev) и Брейзмана (Breizman) из университета Техаса в Остине (англ. UT-Austin), практически вся энергия в ионной циклотронной волне будет равномерно распределена в ионизированной плазме за один проход в циклотронном абсорбционном процессе. Это позволяет ионам покинуть магнитное сопло с очень узким распределением энергии, что дает упрощенное и компактное распределение магнитов в двигателе.[1]

Эффективность

Текущие VASIMR должны обладать удельными импульсами в диапазоне от 3,000 до 30,000 секунд (скорости истечения от 30 до 300 км/с). Нижний предел этого диапазона сопоставим с некоторыми существующими концепциями ионных двигателей. Регулируя получение плазмы и нагрев, VASIMR может управлять удельным импульсом и тягой. Двигатель также способен использовать гораздо более высокие уровни энергии (Мегаватты) по сравнению с существующими концепциями ионных двигателей. Поэтому VASIMR может обеспечить в десятки раз большую тягу, при условии наличия подходящего источника энергии.

Применения

VASIMR не подходит для запуска полезной нагрузки с поверхности Земли из-за его низкого соотношения тяги к массе и может быть использован только в вакууме. Он может быть использован в качестве последней ступени, сокращая потребность в топливе для транспортировки в космосе. Ожидается, что двигатель должен выполнять эти операции за доли стоимости от стоимости на основе технологий химического реактивного движения:

  • компенсация торможения в верхней атмосфере Земли (подъем орбиты) для орбитальных станций.
  • обеспечение доставки грузов на лунную орбиту.
  • заправка топливом в космосе.
  • восстановление ресурсов в космосе.
  • космические транспортировки со сверх-высокими скоростями для дальних исследовательских программ.

Другие применения VASIMR, такие как быстрая транспортировка людей к Марсу, требуют очень высоких энергий, источников энергии с небольшой массой, такой как ядерная энергия.

В Августе 2008 г., Тим Гловер (Tim Glover), директор по развитию фирмы Ад Астра (Ad Astra), публично заявил, что первым ожидаемым применением двигателя VASIMR является "заброс грузов (не людей) с низкой околоземной орбиты на низкую лунную орбиту" и будет предназначено для поддержки программы НАСА возвращения на Луну.[2]

Текущее состояние

Основным разработчиком VASIMR является Ад Астра Рокет Компани (англ. Ad Astra Rocket Company). На данный момент основные усилия были направлены на улучшение общей эффективности двигателя, путём увеличения уровней используемой энергии. Согласно данным компании, текущая эффектиность VASIMR составляет 67%. Опубликованные данные по двигателю VX-50 говорят о том, что двигатель способен использовать 50КВт на излучение в радиодиапазоне, обладает КПД 59%, вычисленное следующим образом: 90% NA эффективность процесса получения ионов × 65% NB эффективность процесса ускорения ионов. Модель VX-100, как ожидается, будет иметь общую эффективность 72%, путём улучшения параметра NB, то есть эффективности ускорения ионов, до 80%.[3][4]

Однако имеются дополнительные меньшие потери эффективности, относящиеся к конвертации постоянного тока в радиоволновую энергию и потребление энергии сверхпроводящими магнитами. Для сравнения, рабочий ионный двигатель НАСА HiPEP, обладает общей эффективностью ускорителя 80%.[5] [6] Опубликованные данные испытаний по VASIMR модели двигателя VX-50 показывают, что он способен производить 0.5 Н тяги. Ад Астра планировала проведение испытаний прототипа двигателя VX-200 в начале 2008 г. с мощностью излучения в радиодиапазоне 200 КВт с целью достижения требуемой эффективности, требуемой тяги и удельного импульса.

24 октября 2008 года компания заявила, что аспект генерации плазмы двигателем VX-200 с помощью радиоволн первой ступени или твердотельным высокочастотным излучателем энергии достиг планируемых рабочих показателей. Ключевая технология, твердотельное преобразование энергии постоянного тока в радиоволны, стала крайне эффективной и достигла уровня 98%. Радиоволновый импульс использует 30 КВт для превращения газа аргон в плазму, оставшиеся 170 КВт расходуются на разгон и разогрев плазмы в задней части двигателя с помощью ион-циклотронного резонансного разогрева.[7]

На основании данных, опубликованных по предыдущим испытаниям VX-100[8], можно ожидать, что двигатель VF-200, который должен быть установлен на МКС, будет иметь системную эффективность 60-65% и уровень тяги 5 Н. Оптимальный удельный импульс предполагается на уровне 5 000 сек с использованием в качестве рабочего тела газа аргон. Удельная мощность оценивается в 1.5 кг/КВт, что означает, что вес данной версии VASIMR будет составлять только 300 кг.

Одна из оставшихся проблем - определение соотношения потенциально-возможной тяги по отношению к действительному её значению. То есть, будет или нет горячая плазма находится на расстоянии от двигателя на самом деле. Это будет подтверждено в 2009 г, когда двигатель VX-200 будет установлен и протестирован в достаточно большой вакуумной камере. Другая проблема - управление выделяемым паразитным теплом при работе (60% эффективности означает около 80 КВт ненужного тепла), решение которой критически важно для продолжительного функционирования двигателя VASIMR.

  • 7 июля 2009 года сотрудники компани Ад Астра успешно испытали плазменный двигатель на сверхпроводящих магнитах [1]

VASIMR двигатель МКС будет использоваться в пакетно-монопольном режиме, с периодическими включениями. Так как производство электроэнергии на МКС не достаточно велико, система будет включать в себя систему батарей с достаточно малым потреблением тока для подзарядки, которая будет позволять работу двигателя в течение 10 мин. Однако этого, как ожидается, будет достаточно для поддержания высоты станции, что исключит необходимость дорогой операции по подъему станции с использованием ускорителей на основе химических реакций горения.

Космический буксир: Орбитальный транспортный корабль

Наиболее важным применением в обозримом будущем для VASIMR-ускоряемых КА является транспортировка грузов. Многочисленные исследования показали что, несмотря на более продолжительное время полета, VASIMR-ускоряемый аппарат будет гораздо более эффективным при движении в космосе по сравнению с традиционными интегрированными химическими ракетами. Космический буксир, ускоряемый одним VF-200, был бы способен переместить 7 тонн груза с низкой земной орбиты на низкую лунную орбиту примерно за шесть месяцев полета. НАСА планирует перемещение 34 тонн полезного груза от Земли до Луны. Для того, чтобы совершить такое путешествие, должно быть сожжено около 60 тонн кислород/водород. Сопоставимый космический буксир требовал бы 5 двигателей VF-200, потребляющих 1 МВт электроэнергии, получаемой от солнечных батарей или от ядерного реактора. Для того, чтобы проделать такую же работу, подобный буксир потратил бы только 8 тонн аргона. Время полета буксира может быть сокращено за счёт полета с меньшим грузом или используя большее количество аргона в двигателях при меньшем удельном импульсе (большем расходе топлива). Например, пустой буксир при возвращении к Земле должен покрывать это расстояние за 23 дня при оптимальном удельном импульсе 5,000 секунд или за 14 дней при удельном импульсе 3,000 секунд.

Полет к Марсу

Предполагается, что 10-20-мегаваттный двигатель класса VASIMR сможет осуществлять миссии по доставке людей к Марсу всего за 39 дней, по сравнению с шестью месяцами, которые требуются традиционным ракетам.[11]

См. также

Примечания

  1. Основные результаты по VASIMR и современные применения (en).
  2. 1 2 Плазменный двигатель может быть испытан на космической станции (en).
  3. Последние достижения в затратах на ионизацию и ион-циклотрон нагревающая эффективность в двигателе VASIMR (en) (PDF).
  4. Эксперименты с VASIMR при высоких энергиях (en) (PDF).
  5. Потребляющее энергию устройство (en/wiki).
  6. Обзор проекта высокоэнергетического электрического реактивного движения (High Power Electric Propulsion, HiPEP) (PDF).
  7. Пресс-релиз: первая ступень VASIMR™ VX-200 достигла всех энергетических показателей (en). (PDF).
  8. Статья: Измерение характеристик VASIMR при уровнях энергии выше 50 КВт и применения к лунным автоматизированным полетам (en). (PDF).
  9. НАСА планирует плазменный двигатель на космической станции (en).
  10. Коммерчески разработанный плазменный двигатель вскоре будет испытан в космосе (en).
  11. "Самый мощный в мире ионный ракетный двигатель (ru).

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Полезное


Смотреть что такое "Электромагнитный ускоритель с изменяемым удельным импульсом" в других словарях:

  • Электромагнитный ракетный ускоритель — VASIMR на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket; VASIMR)  электромагнитный плазменный …   Википедия

  • Двигательная установка космического аппарата — Маршевый двигатель транспортной системы «Спейс Шаттл» во время огневых испытаний в «Космическом центре и …   Википедия

  • VASIMR — на испытательном стенде Электромагнитный ускоритель с изменяемым удельным импульсом (англ. Variable Specific Impulse Magnetoplasma Rocket, VASIMR™) электромагнитный плазменный ускоритель, предназначен для реактивного ускорения КА. Реактивный …   Википедия

  • Чанг-Диас, Франклин — Франклин Чанг Диас Franklin Chang Diaz Страна …   Википедия

  • Воздушно-реактивный двигатель — (ВРД)  тепловой реактивный двигатель, в качестве рабочего тела которого используется смесь забираемого из атмосферы воздуха и продуктов окисления топлива кислородом, содержащимся в воздухе. За счёт реакции окисления рабочее тело нагревается… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»