Выпуклая функция


Выпуклая функция
Выпуклая функция, её график выделен синим и надграфик закрашен зеленым.

Выпуклая функция — функция, у которой надграфик является выпуклым множеством.

Определение

Вещественнозначная функция, определённая на некотором интервале (в общем случае на выпуклом подмножестве некоторого векторного пространства) выпукла, если для любых двух значений аргумента x, y и для любого числа t\in[0,1] выполняется неравенство Йенсена:

f(tx+(1-t)y)\leq t f(x)+(1-t)f(y)

Если это неравенство является строгим для всех t \in (0,1), функция называется строго выпуклой; если выполняется обратное неравенство, функция называется вогнутой, или выпуклой вверх.

NB! Иногда выпуклая функция определяется как вогнутая и наоборот.

Свойства

  • Функция f, выпуклая на интервале \mathbb{I}, непрерывна на всём \mathbb{I}, дифференцируема на всём \mathbb{I} за исключением не более чем счётного множества точек и дважды дифференцируема почти везде.
  • Непрерывная функция f выпукла на \mathbb{I} тогда и только тогда, когда для всех точек x, y \in \mathbb{I} выполняется неравенство
    f\left(\frac{x+y}2 \right) \le \frac{f(x)+f(y)}2
  • Непрерывно дифференцируемая функция одной переменной выпукла на интервале тогда и только тогда, когда её график лежит не ниже касательной, проведённой к этому графику в любой точке промежутка выпуклости.
  • Дважды дифференцируемая функция одной переменной выпукла на интервале тогда и только тогда, когда её вторая производная неотрицательна на этом интервале. Если вторая производная дважды дифференцируемой функции строго положительна, такая функция является строго выпуклой, однако обратное неверно (например, функция f(x)=x^4 строго выпукла на [-1,1], но её вторая производная в точке x=0 равна нулю).
  • Если функции f, g выпуклы, то любая их линейная комбинация af+bg с положительными коэффициентами a, b также выпукла.
  • Локальный минимум выпуклой функции является также глобальным минимумом (соответственно, для выпуклых вверх функций локальный максимум является глобальным максимумом).
  • Любая стационарная точка выпуклой функции будет глобальным экстремумом.
  • Для выпуклых функций выполняется неравенство Йенсена:
    f\left(E(X)\right) \leq E(f(X)),
где X — случайная величина со значениями в области определения функции f, E — математическое ожидание.

Wikimedia Foundation. 2010.

Смотреть что такое "Выпуклая функция" в других словарях:

  • выпуклая функция — — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN convex function …   Справочник технического переводчика

  • ВЫПУКЛАЯ ФУНКЦИЯ — действительного переменного функция , определенная на нек ром интервале, для любых двух точек х 1 и x2 к рого выполняется условие Геометрически это означает, что середина любой хорды графика функции f лежит либо над графиком, либо на нем. Если… …   Математическая энциклопедия

  • ВЫПУКЛАЯ ФУНКЦИЯ — комплексного переменногог регулярная однолистная функция в единичном круге , отображающая единичный круг на нек рую выпуклую область. Регулярная однолистная функция является В. ф. тогда и только тогда, когда при обходе любой окружности… …   Математическая энциклопедия

  • Функция Эйри — График функций Ai(x) (красный) и Bi(x) (синий). Функция Эйри   специаль …   Википедия

  • ВЫПУКЛАЯ ПОСЛЕДОВАТЕЛЬНОСТЬ — последовательность действительных чисел удовлетворяющих условию Если положить то условие (*) запишется в виде Геометрически условие (*) означает, что ломаная на плоскости х, у свершинами в точках х=п, у=а п является выпуклой. Если… …   Математическая энциклопедия

  • Выпуклая оболочка — Выпуклой оболочкой множества называется наименьшее выпуклое множество, содержащее . «Наименьшее множество» здесь означает наименьший элемент по отношению к вложению множеств, то есть такое выпуклое множество, содержащее данную фигуру, что оно… …   Википедия

  • ВЫПУКЛАЯ ПОВЕРХНОСТЬ — область (связное открытое множество) на границе выпуклого тела в евклидовом пространстве Е 3. Вся граница выпуклого тела наз. полной В. п. Если тело конечно, то полная В. п. наз. замкнутой. Если тело бесконечно, то полная В. п. наз. бесконечной.… …   Математическая энциклопедия

  • ВЫПУКЛАЯ ИГРА — бескоалиционная игра п лиц, в к рой существует такое непустое множество игроков А, что для каждого игрока множество его чистых стратегий выпукло, а функция выигрыша ) вогнута по при всех значениях . Если функции выигрыша всех игроков в. В. и.… …   Математическая энциклопедия

  • Квазивыпуклая функция — Квазивыпуклая функция, не являющаяся выпуклой Функция, не являющаяся кваз …   Википедия

  • АНАЛИТИЧЕСКАЯ ФУНКЦИЯ — функция, к рая может быть представлена степенным рядом. Исключит, важность класса А. ф. определяется следующим. Во первых, этот класс достаточно ш и р о к: он охватывает большинство функций, встречающихся в основных вопросах математики и ее… …   Математическая энциклопедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.