Коэффициент корреляции


Коэффициент корреляции

Корреля́ция — статистическая взаимосвязь двух или нескольких случайных величин (либо величин, которые можно с некоторой допустимой степенью точности считать таковыми). При этом, изменения одной или нескольких из этих величин приводят к систематическому изменению другой или других величин. Математической мерой корреляции двух случайных величин служит коэффициент корреляции.

Корреляция может быть положительной и отрицательной (возможна также ситуация отсутствия статистической взаимосвязи — например, для независимых случайных величин). Отрицательная корреляция — корреляция, при которой увеличение одной переменной связано с уменьшением другой переменной, при этом коэффициент корреляции отрицателен. Положительная корреляция — корреляция, при которой увеличение одной переменной связано с увеличением другой переменной, при этом коэффициент корреляции положителен.

Автокорреляция — статистическая взаимосвязь между случайными величинами из одного ряда, но взятых со сдвигом, например, для случайного процесса — со сдвигом по времени.

Метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными, называется корреляционным анализом.

Содержание

Коэффициент корреляции

Коэффицие́нт корреля́ции или парный коэффицие́нт корреля́ции в теории вероятностей и статистике — это показатель характера изменения двух случайных величин. Коэффициент корреляции обозначается латинской буквой R и может принимать значения между -1 и +1. Если значение по модулю находится ближе к 1, то это означает наличие сильной связи (при коэффициенте корреляции равном единице говорят о функциональной связи), а если ближе к 0, то слабой.

Коэффициент корреляции Пирсона

Для метрических величин применяется коэффициент корреляции Пирсона, точная формула которого была введена Фрэнсисом Гальтоном:

Пусть X,Y — две случайные величины, определённые на одном вероятностном пространстве. Тогда их коэффициент корреляции задаётся формулой:

\R_{X,Y} = \frac{\mathrm{cov}(X,Y)}{\sqrt{\mathrm{D}[X]} \cdot \sqrt{\mathrm{D}[Y]}},

где cov обозначает ковариацию, а Dдисперсию, или, что то же самое,

\R_{X,Y} = \frac{\mathbb{E}[XY]-\mathbb{E}X \cdot \mathbb{E}Y} {\sqrt{(\mathbb{E}[X^2]-(\mathbb{E}X)^2)} \cdot \sqrt{ (\mathbb{E}[Y^2]-(\mathbb{E}Y)^2)}},

где символ \mathbb{E} обозначает математическое ожидание.

Для графического представления подобной связи можно использовать прямоугольную систему координат с осями, которые соответствуют обеим переменным. Каждая пара значений маркируется при помощи определенного символа. Такой график называется «диаграммой рассеяния».

Метод вычисления коэффициента корреляции зависит от вида шкалы, к которой относятся переменные. Так, для измерения переменных с интервальной и количественной шкалами необходимо использовать коэффициент корреляции Пирсона (корреляция моментов произведений). Если по меньшей мере одна из двух переменных имеет порядковую шкалу, либо не является нормально распределённой, необходимо использовать ранговую корреляцию Спирмена или τ (тау) Кендала. В случае, когда одна из двух переменных является дихотомической, используется точечная двухрядная корреляция, а если обе переменные являются дихотомическими: четырёхполевая корреляция. Расчёт коэффициента корреляции между двумя недихотомическими переменными не лишён смысла только тогда, кода связь между ними линейна (однонаправлена).

Коэффициент корреляции Кенделла

Используется для измерения взаимной неупорядоченности.

Коэффициент корреляции Спирмена

Свойства коэффициента корреляции

если принять в качестве скалярного произведения двух случайных величин ковариацию \langle X, Y \rangle = \mathrm{cov}(X, Y), то норма случайной величины будет равна \|X\| = \sqrt{\mathrm{D}[X]}, и следствием неравенства Коши — Буняковского будет:
-1 \leqslant \varrho_{X,Y} \leqslant 1.
  • Коэффициент корреляции равен \pm 1 тогда и только тогда, когда X и Y линейно зависимы:
\varrho_{X,Y} = \pm 1 \Leftrightarrow Y = kX+b, k\neq0,
где k,b\in \mathbb{R}. Более того в этом случае знаки \varrho_{X,Y} и k совпадают:
\sgn \varrho_{X,Y} = \sgn k.
  • Если X,Y независимые случайные величины, то \varrho_{X,Y} = 0. Обратное в общем случае неверно.

Корреляционный анализ

Корреляционный анализ — метод обработки статистических данных, заключающийся в изучении коэффициентов (корреляции) между переменными. При этом сравниваются коэффициенты корреляции между одной парой или множеством пар признаков для установления между ними статистических взаимосвязей.

Цель корреляционного анализа — обеспечить получение некоторой информации об одной переменной с помощью другой переменной. В случаях, когда возможно достижение цели, говорят, что переменные коррелируют. В самом общем виде принятие гипотезы о наличии корреляции означает что изменение значения переменной А, произойдет одновременно с пропорциональным изменением значения Б: если обе переменные растут то корреляция положительная, если одна переменная растёт, а вторая уменьшается, корреляция отрицательная.

Корреляция отражает лишь линейную зависимость величин, но не отражает их функциональной связности. Например, если вычислить коэффициент корреляции между величинами A = sin(x) и B = cos(x), то он будет близок к нулю, т. е. зависимость между величинами отсутствует. Между тем, величины A и B очевидно связаны функционально по закону sin2(x) + cos2(x) = 1.

Ограничения корреляционного анализа

Графики распределений пар (x,y) с соответствующими коэффициентами корреляций x и y для каждого из них. Обратите внимание, что коэффициент корреляции отражает линейную зависимость (верхняя строка), но не описывает кривую зависимости (средняя строка), и совсем не подходит для описания сложных, нелинейных зависимостей (нижняя строка).
  1. Применение возможно в случае наличия достаточного количества случаев для изучения: для конкретного вида коэффициента корреляции составляет от 25 до 100 пар наблюдений.
  2. Второе ограничение вытекает из гипотезы корреляционного анализа, в которую заложена линейная зависимость переменных. Во многих случаях, когда достоверно известно, что зависимость существует, корреляционный анализ может не дать результатов просто ввиду того, что зависимость нелинейна (выражена, например, в виде параболы).
  3. Сам по себе факт корреляционной зависимости не даёт основания утверждать, какая из переменных предшествует или является причиной изменений, или что переменные вообще причинно связаны между собой, например, ввиду действия третьего фактора.

Область применения

Данный метод обработки статистических данных весьма популярен в экономике и социальных науках (в частности в психологии и социологии), хотя сфера применения коэффициентов корреляции обширна: контроль качества промышленной продукции, металловедение, агрохимия, гидробиология, биометрия и прочие.

Популярность метода обусловлена двумя моментами: коэффициенты корреляции относительно просты в подсчете, их применение не требует специальной математической подготовки. В сочетании с простотой интерпретации, простота применения коэффициента привела к его широкому распространению в сфере анализа статистических данных.

Ложная корреляция

Часто заманчивая простота корреляционного исследования подталкивает исследователя делать ложные интуитивные выводы о наличии причинно-следственной связи между парами признаков, в то время как коэффициенты корреляции устанавливают лишь статистические взаимосвязи.

В современной количественной методологии социальных наук, фактически, произошел отказ от попыток установить причинно-следственные связи между наблюдаемыми переменными эмпирическими методами. Поэтому, когда исследователи в социальных науках говорят об установлении взаимосвязей между изучаемыми переменными, подразумевается либо общетеоретическое допущение, либо статистическая зависимость.

См. также


Wikimedia Foundation. 2010.

Смотреть что такое "Коэффициент корреляции" в других словарях:

  • Коэффициент корреляции — Математическое представление о степени связи между двумя сериями измерений. Коэффициент +1 обозначает четкую позитивную корреляцию: высокие показатели по одному параметру (например, рост) точно соотносятся с высокими показателями по другому… …   Большая психологическая энциклопедия

  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — ρ μера силы линейной связи между случайными величинами X и У: , где ЕХ математическое ожидание X; DX дисперсия X, EY математическое ожидание У; DY дисперсия У; 1 ≤ ρ ≤ 1. Если X, Y линейно связаны, то ρ = ± 1. Для… …   Геологическая энциклопедия

  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — англ. coefficient, correlation; нем. Korrelationskoeffizient. Мера тесноты связи двух или более переменных. Antinazi. Энциклопедия социологии, 2009 …   Энциклопедия социологии

  • коэффициент корреляции — — [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN correlation coefficient …   Справочник технического переводчика

  • Коэффициент корреляции — (Correlation coefficient) Коэффициент корреляции это статистический показатель зависимости двух случайных величин Определение коэффициента корреляции, виды коэффициентов корреляции, свойства коэффициента корреляции, вычисление и применение… …   Энциклопедия инвестора

  • коэффициент корреляции — 1.33. коэффициент корреляции Отношение ковариации двух случайных величин к произведению их стандартных отклонений: Примечания 1. Эта величина всегда будет принимать значения от минус 1 до плюс 1, включая крайние значения. 2. Если две случайные… …   Словарь-справочник терминов нормативно-технической документации

  • КОЭФФИЦИЕНТ КОРРЕЛЯЦИИ — (correlation coefficient) мера ассоциации одной переменной с другой. См. Корреляция; Коэффициент корреляции производного значения Пирсона; Коэффициент ранговой корреляции спирмена …   Большой толковый социологический словарь

  • Коэффициент корреляции — CORRELATION COEFFICIENT Показатель степени линейной зависимости между двумя переменными величинами: Коэффициент корреляции может изменяться в пределах от 1 до 1. Если большим значениям одной величины соответствуют большие значения другой (и… …   Словарь-справочник по экономике

  • коэффициент корреляции — koreliacijos koeficientas statusas T sritis automatika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m …   Automatikos terminų žodynas

  • коэффициент корреляции — koreliacijos koeficientas statusas T sritis fizika atitikmenys: angl. correlation coefficient vok. Korrelationskoeffizient, m rus. коэффициент корреляции, m pranc. coefficient de corrélation, m …   Fizikos terminų žodynas

Книги

Другие книги по запросу «Коэффициент корреляции» >>