Цепочка ББГКИ

Цепочка ББГКИ

Цепочка уравнений Боголюбова (цепочка ББГКИ, ББГКИ иерархия, цепочка уравнений Боголюбова — Борна — Грина — Кирквуда — Ивона) — система уравнений эволюции системы, состоящей из большого числа тождественных взаимодействующих частиц, заключенных в некотором объеме V. Последовательность уравнений ББГКИ выражает эволюцию s-частичной функции распределения через (s+1)-частичную функцию распределения. Названа в честь Боголюбова, Борна, Грина, Кирквуда (англ. John Gamble Kirkwood) и Ивона (Yvon).

Содержание

Формулировка

Рассмотрим систему из N частиц с парным взаимодействием, находящуюся во внешнем поле. Пусть \mathbf{q}_i, \mathbf{p}_i — обобщенные координаты и импульсы i-ой частицы, \Phi^{ext}(\mathbf{q}_i) — потенциал взаимодействия с внешнем полем, \Phi_{ij}(\mathbf{q}_i, \mathbf{q}_j) — потенциал (парного) взаимодействия частиц. Функция распределения полной системы f_N = f_N(\mathbf{q}_1\dots\mathbf{q}_N, \mathbf{p}_1 \dots \mathbf{p}_N, t) удовлетворяет уравнению Лиувилля


\frac{\partial f_N}{\partial t} + \sum_{i=1}^N \dot \mathbf{q}_i \frac{\partial f_N}{\partial \mathbf{q}_i} + \sum_{i=1}^N \left( - \frac{\partial \Phi_i^{ext}}{\partial \mathbf{q}_i} - \sum_{j=1}^N \frac{\partial \Phi_{ij}}{\partial \mathbf{q}_i} \right) \frac{\partial f_N}{\partial \mathbf{p}_i} = 0

Рассматриваемая цепочка уравнений получается последовательным интегрированием уравнения Лиувилля по части переменных. В результате уравнение для s-частичной функции распределения f_s = f_s(\mathbf{q}_1\dots\mathbf{q}_s, \mathbf{p}_1 \dots \mathbf{p}_s, t) имеет вид:


\frac{\partial f_s}{\partial t} + \sum_{i=1}^s \dot \mathbf{q}_i \frac{\partial f_s}{\partial \mathbf{q}_i} + \sum_{i=1}^s \left( - \frac{\partial \Phi_i^{ext}}{\partial \mathbf{q}_i} - \sum_{j=1}^s \frac{\partial \Phi_{ij}}{\partial \mathbf{q}_i} \right) \frac{\partial f_s}{\partial \mathbf{p}_i} = \sum_{i=1}^s \left( N -s \right) \frac{\partial}{\partial \mathbf{p}_i} \int \frac{\partial \Phi_{is+1}}{\partial \mathbf{q}_i} f_{s+1} \,d\mathbf{q}_{s+1} d\mathbf{p}_{s+1}

Применение

Полученная цепочка зацепляющихся уравнений эквивалентна исходному уравнению Лиувилля и тем самым не описывает необратимость. К тому же, сложность её решения совпадает со сложностью решения уравнения Лиувилля. Однако при её обрыве и некоторых дополнительных предположениях симметричность по времени исчезает, как например при получении из цепочки ББГКИ классических[1] и квантовых[2] кинетических уравнений, и в частности, уравнения Больцмана. Подобные упрощения делают ББГКИ иерархию отправной точкой для многих кинетических теорий.

Примечания

  1. Боголюбов Н. Н. Кинетические уравнения // Журнал экспериментальной и теоретической физики. — 1946. — Т. 16 (8). — С. 691—702.
  2. Боголюбов Н. Н., Гуров К. П. Кинетические уравнения в квантовой механике // Журнал экспериментальной и теоретической физики. — 1947. — Т. 17 (7). — С. 614—628.

См. также

Литература

  • Боголюбов Н. Н. Проблемы динамической теории в статистической физике. — М.: Изд-во Гостехиздат, 1946. — 120 с.
  • Боголюбов Н. Н. Избранные труды по статистической физике. — М.: Изд-во МГУ, 1979.
  • Боголюбов Н. Н. Собрание научных трудов: в 12-ти тт. — М.: Наука, 2006. — Т. 5: Неравновесная статистическая механика, 1939—1980. — ISBN 5020341428
  • Гуров К. П. Основания кинетической теории (метод Н. Н. Боголюбова). — М.: Наука, 1966. — 352 с.
  • Шелест А. В. Метод Боголюбова в динамической теории кинетических уравнений. — М.: Наука, 1990. — 159 с. — ISBN 5020140309

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Полезное


Смотреть что такое "Цепочка ББГКИ" в других словарях:

  • Цепочка уравнений Боголюбова — (цепочка ББГКИ, иерархия ББГКИ, цепочка уравнений Боголюбова  Борна  Грина  Кирквуда  Ивона)  система уравнений эволюции системы, состоящей из большого числа тождественных взаимодействующих частиц, заключенных в некотором …   Википедия

  • ББГКИ — Боголюбов, Борн, Грин, Кирквуд, Ивон физ. Источник: http://lib.mexmat.ru/books/5441 Примеры использования цепочка ББГКИ система уравнений ББГКИ …   Словарь сокращений и аббревиатур

  • БОГОЛЮБОВА ЦЕПОЧКА УРАВНЕНИЙ — (ББГКИ уравнения Н. Н. Боголюбов, М. Борн (М. Born), Дж. Грин (G. Green), Дж. Кирквуд (J. G. Kirkwood), Дж. Ивон (J. Yvon) цепочка уравнений (иерархия) для одночастичных, двухчастичных и т. д. функций распределения классической статистич. системы …   Математическая энциклопедия

  • Боголюбова — Борна — Грина — Кирквуда — Ивона уравнения — Цепочка уравнений Боголюбова (цепочка ББГКИ, ББГКИ иерархия, цепочка уравнений Боголюбова  Борна  Грина  Кирквуда  Ивона)  система уравнений эволюции системы, состоящей из большого числа тождественных взаимодействующих частиц, заключенных в… …   Википедия

  • Уравнение Боголюбова — Цепочка уравнений Боголюбова (цепочка ББГКИ, ББГКИ иерархия, цепочка уравнений Боголюбова  Борна  Грина  Кирквуда  Ивона)  система уравнений эволюции системы, состоящей из большого числа тождественных взаимодействующих частиц, заключенных в… …   Википедия

  • Грин, Герберт — В Википедии есть статьи о других людях с такой фамилией, см. Грин. Герберт Сидней Грин Herbert Sydney Green Дата рождения: 17 декабря …   Википедия

  • Грин Герберт — Герберт Сидней Грин Herbert Sydney Green Дата рождения: 17 декабря 1920 Место рождения: Ипсвич, Англия Дата смерти: 16 февраля 1999 Место смерт …   Википедия

  • Боголюбов, Николай Николаевич — Николай Николаевич Боголюбов Дважды Герой Социалистического Труда Н. Н. Боголюбов Дата рождения: 8 (21) августа …   Википедия

  • Боголюбов Н. Н. — Николай Николаевич Боголюбов Дата рождения: 21 августа 1909 Место рождения: Нижний Новгород Дата смерти: 13 февраля 1992 Место смерти: Москва Гражданство …   Википедия

  • Боголюбов Николай Николаевич — Николай Николаевич Боголюбов Дата рождения: 21 августа 1909 Место рождения: Нижний Новгород Дата смерти: 13 февраля 1992 Место смерти: Москва Гражданство …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»