Функция влияния


Функция влияния

Наличие в выборках даже небольшого числа резко выделяющихся наблюдений способно фатально повлиять на результат статистического исследования (к примеру, того же метода наименьших квадратов или метода максимального правдоподобия), и может получиться так, что значения, полученные в результате, перестанут нести в себе какой-либо смысл.

Для того, чтобы избежать подобных неприятностей, необходимо каким-то образом снизить влияние «плохих» наблюдений, либо вовсе исключить их. Однако возникает вопрос: «Как отличить „плохое“ наблюдение от „хорошего“?» Даже самый простой из подходов — субъективный (основанный на внутренних ощущениях статистика) — может принести значительную пользу, однако для отбраковки все же предпочтительнее применять методы, имеющие в своей основе некие строгие математические обоснования, а не только интуитивные предположения исследователя. Этот процесс представляет собой весьма нетривиальную задачу для статистика и определяет собой одно из направлений статистической науки.

Содержание

Понятие робастности[1][2]

Под робастностью в статистике понимают нечувствительность к различным отклонениям и неоднородностям в выборке, связанным с теми или иными, в общем случае неизвестными, причинами. Это могут быть ошибки детектора, регистрирующего наблюдения, чьи-то добросовестные или не очень попытки «подогнать» выборку до того, как она попадёт к статистику, ошибки оформления, вкравшиеся опечатки и многое, многое другое.

Например, наиболее робастной оценкой параметра сдвига закона распределения является медиана, что на интуитивном уровне вполне очевидно (для строгого доказательства следует воспользоваться тем, что медиана является усечённой М-оценкой, см. ниже).[1]

Помимо непосредственно «бракованных» наблюдений также может присутствовать некоторое количество наблюдений, подчиняющихся другому распределению. Ввиду условности законов распределений, а это не более, чем красивые модели описания, сама по себе выборка может содержать некоторые расхождения с идеалом.

Тем не менее, параметрический подход настолько вжился, доказав свою простоту и целесообразность, что нелепо от него отказываться. Поэтому и возникла необходимость приспособить старую проверенную модель к новым задачам.

Стоит отдельно подчеркнуть и не забывать, что отбракованные наблюдения нуждаются в отдельном, более пристальном внимании. Наблюдения, кажущиеся «плохими» для одной гипотезы, могут вполне соответствовать другой. Наконец, отнюдь не всегда резко выделяющиеся наблюдения являются «браком». Одно такое наблюдение для генной инженерии, к примеру, стоит миллионов других, мало отличающихся друг от друга.

Основные подходы

Для того, чтобы ограничить влияние неоднородностей, либо вовсе его исключить, существует множество различных подходов. Среди них выделяются два основных направления:

  • Сгруппировать данные, не отбраковывая отдельные наблюдения, таким образом значительно снизив возможность порчи выборки отдельными выпадами. После чего с достаточной степенью уверенности пользоваться классическими методами статистики.

Группирование данных как метод робастной статистики

Посредством группирования выборки можно резко снизить влияние отдельных наблюдений, не отбрасывая их. Разбиение на интервалы не представляет особых трудностей и даёт весьма ощутимый результат. Существует три наиболее распространённых способа разбиения:

  • Разбиение на интервалы равной длины. Наиболее простой и потому распространённый способ.
  • Разбиение на асимптотически оптимальные интервалы. При таком разбиении минимизируются потери информации в результате группирования, то есть максимизируется фишеровская информация \sum \left( \frac{\partial \ln P_i}{\partial \theta} \right) ^2 P_i \!, где \theta \! — оцениваемый параметр закона. Для многих законов распределения удалось получить инвариантные относительно параметров границы интервалов, и были составлены соответствующие таблицы. Такое разбиение позволяет максимизировать мощность критерия.

Подход, основанный на функции влияния[1]

Введение

В данном разделе рассматриваются аспекты, касающиеся оценивания параметров закона распределения по «засорённой» выборке с использованием подхода, предложенного Хампелем. Для того, чтобы изучить влияние отдельно взятого наблюдения на оценку (рассматриваемую статистику) того или иного параметра закона распределения Хампелем вводится так называемая функция влияния (influence function), которая представляет собой ни что иное, как производную этой статистики.

Основные понятия

Введём функционал T\!, как функцию от некоторой выборки X=(X_1 \ldots X_n) \in \mathbb{X}\! из распределения F\! c параметром \theta \in \Theta\! (оно же F_\theta\!). T\! зависит от X:F_\theta\!. Значит T\! является функцией от закона F\! и от параметра \theta\!. Пусть T\! также удовлетворяет некоторым условиям состоятельности и регулярности:

T(F) = \theta, \quad \int T \, \mathrm{d} F = 0.\!

Определим производную этого функционала T\! в точке с распределением F\! следующим образом:

\exists \, a: \quad \lim_{t \to 0} \frac{T((1 - t)F+t G) - T(F)}{t} := \int a \, \mathrm{d} G ,\! где a\! — некая функция, смысл которой прояснится на следующем шаге, а G\! — некий закон распределения, отличный от F\!.

Подставим \Delta_x\!, приписывающую единичную массу событию X = x\!, вместо G\!, в результате чего от интеграла в правой части выражения останется только a(x)\!, и перепишем получившийся результат в следующем виде:

IF = \lim_{t \to 0} \frac{T((1 - t) F + t \Delta_x) - T(F)}{t}\!
Эту функцию и называют функцией влияния.

Чтобы пояснить смысл введённого понятия подставим \frac{1}{n}\! вместо t\!, заменив предел. В результате выражение F_{t,x}=(1 - t)F + t \Delta_x \! преобразуется в F_{\frac{1}{n},x}=\frac{(n-1)F + \Delta_x}{n}\!, что соответствует ситуации, когда в выборку, состоящую из (n-1)\! наблюдения, подчиняющихся распределению F\!, добавляют ещё одно новое. Таким образом IF\! отслеживает реакцию используемого функционала T\! на внесённое добавление, показывая влияние от вклада отдельного наблюдения x\! на оценку по всей совокупности данных.

Для характеристики влияния отдельных наблюдений также вводят понятие чувствительности к большой ошибке γ :
\gamma = \sup_{x \in \mathbb{X}} | IF(x) |
Если функция влияния ограничена, то соответствующую оценку называют B(бэ)-робастной.

М-оценки

Наиболее эффективными и широко используемыми оценками параметров законов распределений являются оценки максимального правдоподобия (ОМП), которые определяются одним из следующих условий:

\sum_i \ln P_i  \to  \max_{\theta \in \Theta},\qquad \sum_i \frac{\partial \ln P_i}{\partial \theta} = 0, \qquad \sum_i \frac{P_i'}{P_i} = 0\!

где в случае негруппированной выборки P_i=f(x_i,\theta)\!, а в случае группированной — P_i=\left( \int\limits_{x_{i-1}}^{x_i} f(x,\theta) \, \mathrm{d} x \right)^{n_i}\!

М-оценки — есть некое обобщение ОМП. Они определяются аналогично одним из соотношений:
\sum_{i=1}^N \rho(x_i,\theta) \to \max_{\theta \in \Theta}, \qquad \sum_{i=1}^N \phi(x_i,\theta) =0\!

Если наложить условие регулярности в подстановке  F_{t,x}=(1-t)F+t\Delta_x \! и продифференцировать его по t\! в 0:

0 = \frac{\partial}{\partial{t}} \int \phi(x,T(F_{t,x})) \, \mathrm{d} F_{t,x}\!
0 = \int \frac{\partial \phi(x,T(F_{t,x}))}{\partial \theta} IF \, \mathrm{d} F_{t,x} + \int \phi(x,T(F_{t,x})) \, \mathrm{d} \frac{\partial ((1-t)F + t \Delta_x)}{\partial t}\!
0 = IF \int \frac{\partial \phi(x,T(F_{t,x}))}{\partial \theta}  \, \mathrm{d} F_{t,x} + \phi(x,T(F_{t,x}))\!
то не представляет большого труда получить выражение функции влияния для M-оценок:
IF=\frac{-\phi(x)} {\int \phi'_{\theta} (x) \, \mathrm{d} F}\!

Указанное выражение позволяет сделать вывод о том, что M-оценки эквивалентны с точностью до ненулевого множителя-константы.

Пример функций влияния для усечённых ОМП параметров сдвига (син.) и параметра масштаба (красн.) стандартного нормального закона распределения.

Несложно проверить, что для ОМП стандартного нормального закона распределения \mathcal{N}(0,1)\! функции влияния IF\! параметра сдвига и параметра масштаба выглядят соответственно:

 IF = x, \quad IF = \frac{1}{2} \; x^2 - \frac{1}{2}\!

Эти функции неограничены, а это значит, что ОМП не является робастной в терминах B-робастности.

Для того, чтобы это исправить, M-оценки искусственно ограничивают, а значит и ограничивают ее IF\! (см. выражение IF\! для M-оценок), устанавливая верхний барьер на влияние резко выделяющихся (далеко отстоящих от предполагаемых значений параметров) наблюдений. Делается это введением так называемых усечённых M-оценок, определяемых выражением:

\phi_b (z)=\left\{ \begin{array}{lr}
\phi(b), & b < z \\
\phi(z), & -b < z \leqslant b \\
\phi(-b), & z \leqslant -b
\end{array} \right.\!

где z=\frac{x-\theta}{S}, \theta\! и S\! — оценки параметров сдвига и масштаба соответственно.

Среди усечённых M-оценок оптимальными с точки зрения B-робастности являются усечённые ОМП.[1]

Процедура оценивания параметров

Чтобы решить уравнение \sum_{i=1}^N \phi(x_i,\theta) =0\! необходимо воспользоваться каким-либо численным методом. Для этого понадобится выбрать начальные приближения. Нулевым параметром сдвига обычно служит медиана, параметром масштаба — значение, кратное медиане отклонений от медианы.

Например, если необходимо оценить параметр сдвига, скажем, нормального закона распределения, можно воспользоваться методом Ньютона численного нахождения корней уравнения. В результате вся процедура нахождения параметра сводится к итеративному вычислению выражения:

\theta_{k+1}=\theta_k - \frac{\sum_{i=1}^N \phi (x_i,\theta_k)}{\sum_{i=1}^N \phi'_\theta (x_i,\theta_k)}=\theta_k - \frac{\sum_{i=1}^N \phi \left((x_i-\theta_k)/S\right)}{\sum_{i=1}^N \phi'_\theta \left((x_i-\theta_k)/S\right)}=\theta_k + S \frac{\sum_{i=1}^N \phi \left(z\right)}{\sum_{i=1}^N \phi'_z \left(z\right)},

где S\! — некоторая оценка параметра масштаба, которая нужна для того, чтобы уравнять распределения с разным размахом.

Литература

  1. 1 2 3 4 5 Хампель Ф., Рончетти Э., Рауссеу П., Штаэль В. Робастность в статистике. Подход на основе функций влияния. = Robust statistics: the approach based on influence functions. — М.: Мир, 1989.
  2. Хьюбер П. Робастность в статистике. — М.: Мир, 1984.
  3. Кендалл М., Стьюарт А. Статистические выводы и связи. — М.: Наука, 1973.

См. также

Интересную информацию по теме можно найти здесь

Ссылки



Wikimedia Foundation. 2010.

Смотреть что такое "Функция влияния" в других словарях:

  • функция влияния акселерометра — функция влияния Зависимость дополнительной погрешности акселерометра от значения одной или нескольких влияющих величин, представленная в виде таблицы, графика или формулы. Примечание В случае линейной зависимости используется коэффициент влияния …   Справочник технического переводчика

  • диффузионная функция влияния — difuzijos integralo branduolys statusas T sritis fizika atitikmenys: angl. diffusion integral kernel; diffusion kernel vok. Diffusionsintegralkern, m; Diffusionskern, m rus. диффузионная функция влияния, f; диффузионное ядро, n pranc. noyau de… …   Fizikos terminų žodynas

  • Функция восприятия права — ФУНКЦИЯ ВОСПРИЯТИЯ ПРАВА. Специфика действия права заключается в том, что без «проникающего» влияния на волю и сознание своих адресатов оно не может достичь поставленных целей. Для того чтобы его нормы воплотились в правомерном поведении, они… …   Элементарные начала общей теории права

  • ФУНКЦИЯ — (Function; Funktion) форма психической активности или проявление либидо, принципиально остающаяся неизменной в меняющихся условиях.Юнговская типологическая модель зиждется на четырех психологических функциях: мышлении, чувстве, ощущении и… …   Словарь по аналитической психологии

  • ДИССИПАТИВНАЯ ФУНКЦИЯ — функция рассеяния, функция, вводимая для учета влияния сил вязкого трения на движение механич. системы. Д. ф. характеризует степень убывания механич. энергии этой системы; вводится также вообще для учета перехода энергии упорядоченного движения в …   Математическая энциклопедия

  • Диссипативная функция — (функция рассеяния) функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте в тепловую, например, для учёта влияния сил вязкого трения на движение механической системы.… …   Википедия

  • Диссапативная функция — Диссипативная функция (функция рассеяния) функция, вводимая для учёта перехода энергии упорядоченного движения в энергию неупорядоченного движения, в конечном счёте в тепловую, например, для учёта влияния сил вязкого трения на движение… …   Википедия

  • производственная функция — Описание возможных вариантов продуктов системы, в зависимости от различных видов исходных компонентов системы [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] производственная функция функция производства ПФ Экономико математическое… …   Справочник технического переводчика

  • ПОДЧИНЕННАЯ ФУНКЦИЯ — (Inferior function; Minder wertige Funktion) наименее дифференцированная из всех четырех психологических функций.При описании психологических функциональных типов Юнгом был сделан акцент на то, что каждый человек, как правило, кроме основной… …   Словарь по аналитической психологии

  • Производственная функция — (ПФ) [production function], то же: функция производства экономико математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ применяются для анализа влияния различных сочетаний факторов… …   Экономико-математический словарь

Книги

Другие книги по запросу «Функция влияния» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.