Протеин

Протеин
Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка.

Белки́ (протеи́ны, полипепти́ды) — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют сложные комплексы, например, фотосинтетический комплекс.

Содержание

Функции белков в клетках живых организмов более разнообразны, чем функции других биополимеров — полисахаридов и ДНК. Так, белки-ферменты катализируют протекание биохимических реакций и играют важную роль в обмене веществ. Некоторые белки выполняют структурную или механическую функцию, образуя цитоскелет, поддерживающий форму клеток. Также белки играют важную роль в сигнальных системах клеток, при иммунном ответе и в клеточном цикле.

Белки — важная часть питания животных и человека, поскольку в их организме не могут синтезироваться все необходимые аминокислоты и часть из них поступает с белковой пищей. В процессе пищеварения ферменты разрушают потреблённые белки до аминокислот, которые используются при биосинтезе белков организма или подвергаются дальнейшему распаду для получения энергии.

Определение аминокислотной последовательности первого белка — инсулина — методом секвенирования белков принесло Фредерику Сенгеру Нобелевскую премию в 1958 году. Первые трёхмерные структуры белков гемоглобина и миоглобина были получены методом дифракции рентгеновских лучей, соответственно, Максом Перуцем и Джоном Кендрю в 1958 году[1][2], за что в 1962 году они получили Нобелевскую премию по химии.

История изучения

Антуан Франсуа де Фуркруа, основоположник изучения белков

Белки были выделены в отдельный класс биологических молекул в XVIII веке в результате работ французского химика Антуана Фуркруа и других учёных, в которых было отмечено свойство белков коагулировать (денатурировать) под воздействием нагревания или кислот. В то время были исследованы такие белки, как альбумин («яичный белок»), фибрин (белок из крови) и глютен из зерна пшеницы. Голландский химик Геррит Мульдер провёл анализ состава белков и выдвинул гипотезу, что практически все белки имеют сходную эмпирическую формулу. Термин «протеин» для обозначения подобных молекул был предложен в 1838 году сотрудником Мульдера Якобом Берцелиусом [3]. Мульдер также определил продукты разрушения белков — аминокислоты и для одной из них (лейцина) почти точно определил молекулярную массу — 131 дальтон. В 1836 Мулдер предложил первую модель химического строения белков. Основываясь на теории радикалов он сформулировал понятие о минимальной структурной единице состава белка, C16H24N4O5, которая была названа протеин (Pr), а теория — теорией протеина [4]. По мере накопления новых данных о белках теория неоднократно подвергалась критике, но до конца 1850-х оставалась общепризнанной.

К концу XIX века было исследовано большинство аминокислот, которые входят в состав белков. В 1894 году немецкий физиолог Альбрехт Коссель выдвинул теорию, согласно которой именно аминокислоты являются основными структурными элементами белков[5]. В начале XX века немецкий химик Эмиль Фишер экспериментально доказал, что белки состоят из аминокислотных остатков, соединённых пептидными связями. Он же осуществил первый анализ аминокислотной последовательности белка и объяснил явление протеолиза

Однако центральная роль белков в организмах не была признана до 1926 года, когда американский химик Джеймс Самнер (впоследствии — лауреат Нобелевской премии) показал, что фермент уреаза была белком[6].

Изучению белков препятствовала сложность их выделения. Поэтому первые исследования белков проводились с использованием тех полипептидов, которые могли быть очищены в большом количестве, то есть белков крови, куриных яиц, различных токсинов и пищеварительных/метаболических ферментов, которые можно было выделить в местах забоя скота. В конце 1950-х годов компания Armour Hot Dog Co смогла очистить килограмм бычьей панкреатической рибонуклеазы А, которая стала экспериментальным объектом для многих учёных.

Идея о том, что вторичная структура белков образуется в результате образования водородных связей между аминокислотами, была высказана Уильямом Астбери в 1933 году, но Лайнус Полинг считается первым учёным, который смог успешно предсказать вторичную структуру белков. Позднее Уолтер Каузман, опираясь на работы Кая Линдерстрём-Ланга, внёс весомый вклад в понимание законов образования третичной структуры белков и роли в этом процессе гидрофобных взаимодействий. В 1949 году Фред Сенгер определил аминокислотную последовательность инсулина, продемонстрировав таким способом, что белки — это линейные полимеры аминокислот, а не их разветвлённые (как у некоторых сахаров) цепи, коллоиды или циклолы. Первые структуры белков, основанные на дифракции рентгеновских лучей на уровне отдельных атомов были получены в 1960-х годах и с помощью ЯМР в 1980-х годах. В 2006 году Банк данных о белках (Protein Data Bank) содержал около 40 000 структур белков.

В XXI веке исследование белков перешло на качественно новый уровень, когда исследуются не только индивидуальные очищенные белки, но и одновременное изменение количества и посттрансляционных модификаций большого числа белков отдельных клеток, тканей или организмов. Эта область биохимии называется протеомикой. С помощью методов биоинформатики стало возможно не только обработать данные рентгенно-структурного анализа, но и предсказать структуру белка, основываясь на его аминокислотной последовательности. В настоящее время криоэлектронная микроскопия больших белковых комплексов и предсказание малых белков и доменов больших белков с помощью компьютерных программ по точности приближаются к разрешению структур на атомном уровне.

Свойства

Сравнительный размер белков. Слева направо: Антитело (IgG), гемоглобин, инсулин (гормон), аденилаткиназа (фермент) и глютаминсинтетаза (фермент)

Размер белка может измеряться в числе аминокислот или в дальтонах (молекулярная масса), чаще из-за относительно большой величины молекулы в производных единицах — килодальтонах (кДа). Белки дрожжей, в среднем, состоят из 466 аминокислот и имеют молекулярную массу 53 кДа. Самый большой из известных в настоящее время белков — титин (другие названия: тайтин, коннектин) — является компонентом саркомеров мускулов; молекулярная масса его различных изоформ варьирует в интервале от 3 000 до 3 700 кДа, а общая длина 38 138 аминокислот (в человеческой мышце solius[7]).

Белки также являются амфотерными полиэлектролитами (полиамфолитами), при этом группами, способными к ионизации в растворе, являются карбоксильные остатки боковых цепей кислых аминокислот (аспарагиновая и глутаминовая кислоты) и азотсодержащие боковых цепей основных аминокислот (в первую очередь ω-аминогруппа лизина и амидиновый остаток CNH(NH2) аргинина, в несколько меньшей степени — имидазольный остаток гистидина). Белки как полиамфолиты характеризуются изоэлектрической точкой (pI) — кислотностью среды рН, при которой молекула данного белка не несёт электрического заряда и, соответственно, не перемещаются в электрическом поле (например, при электрофорезе). Величина pI определяется отношением кислотных и основных аминокислотных остатков в белке: увеличение количества остатков основных аминокислот в данном белке ведёт к увеличению pI; увеличение количества остатков кислых аминокислот приводит к снижению значения pI.

Значение изоэлектрической точки является характерной константой белков. Белки с pI меньше 7 называются кислотными, а белки с pI больше 7 считаются основными. В целом, pI белка зависит от выполняемой им функции: изоэлектрическая точка большинства белков тканей позвоночных лежит в пределах от 5,5 до 7,0, однако некоторых случаях значения лежат в экстремальных областях так, например, для пепсина — протеолетического фермента сильнокислого желудочного сока pI ~ 1[8], а для сальмина — белка-протамина молок лосося, особенностью которого является чрезвычайно высокое содержание аргинина, pI ~ 12. Белки, связывающиеся с нуклеиновыми кислотами за счёт электростатического взаимодействия с фосфатными остатками нуклеиновых кислот часто являются основными белками. Примером таких белков служат гистоны и протамины.

По степени растворимости в воде белки бывают растворимыми (гидрофильные) и нерастворимыми (гидрофобные). К последним относятся большинство входящих в состав биологических мембран интегральных мембранных белков, которые взаимодействуют с гидрофобными липидами мембраны [9].

Денатурация

Необратимая денатурация белка куриного яйца под воздействием высокой температуры
Основная статья: Денатурация белков

Как правило, белки сохраняют структуру и, следовательно, физико-химические свойства, например, растворимость в условиях, таких как температура и рН, к которым приспособлен данный организм[6]. Резкое изменение этих условий, например, нагревание или обработка белка кислотой или щёлочью приводит к потере четвертичной, третичной и вторичной структур белка, называемой денатурацией. Самый известный случай денатурации белка в быту — это приготовление куриного яйца, когда под воздействием высокой температуры растворимый в воде прозрачный белок овальбумин становится плотным, нерастворимым и непрозрачным. Денатурация в некоторых случаях обратима, как в случае осаждения (преципитации) водорастворимых белков с помощью солей аммония, и используется как способ их очистки[10].

Простые и сложные белки

Все белки разделяют на две большие группы — простые и сложные белки. Простые белки содержат только аминокислоты, сложные белки имеют также неаминокислотные группы. Эти дополнительные группы в составе сложных белков называются «простетическими группами». Примерами простетических групп в составе белков служат гем (в составе гемоглобина), витамины тиамин и биотин. Неорганические простетические группы состоят из ионов металлов — цинка, магния и молибдена [11] .

Структура белка

Схематическое изображение образования пептидной связи (справа). Подобная реакция происходит в молекулярной машине по образованию белка — рибосоме

Молекулы белков представляют собой линейные полимеры, состоящие из α-L-аминокислот (которые являются мономерами) и, в некоторых случаях, из модифицированных основных аминокислот (правда, модификации происходят уже после синтеза белка на рибосоме). Для обозначения аминокислот в научной литературе используются одно- или трёхбуквенные сокращения. Хотя на первый взгляд может показаться, что использование в большинстве белков «всего» 20 видов аминокислот ограничивает разнообразие белковых структур, на самом деле количество вариантов трудно переоценить: для цепочки всего из 5 аминокислот оно составляет уже более 3 миллионов, а цепочка из 100 аминокислот (небольшой белок) может быть представлена более чем в 10130 вариантах. Белки длиной от 2 до нескольких десятков аминокислотных остатков часто называют пептидами, при большей степени полимеризации — белками, хотя это деление весьма условно.

При образовании белка в результате взаимодействия α-аминогруппы (-NH2) одной аминокислоты с α-карбоксильной группой (-СООН) другой аминокислоты образуются пептидные связи. Концы белка называют С- и N- концом (в зависимости от того, какая из групп концевой аминокислоты свободна: -COOH или -NH2, соответственно). При синтезе белка на рибосоме новые аминокислоты присоединяются к C-концу, поэтому название пептида или белка даётся путём перечисления аминокислотных остатков начиная с N-конца.

Последовательность аминокислот в белке соответствует информации, содержащейся в гене данного белка. Эта информация представлена в виде последовательности нуклеотидов, причём одной аминокислоте соответствует одна или несколько последовательностей из трёх нуклеотидов — так называемых триплетов или кодонов. То, какая аминокислота соответствует данному кодону в мРНК определяется генетическим кодом, который может несколько отличаться у разных организмов.

Сравнение аминокислотных последовательностей белков (в данном случае — гемоглобинов) из разных организмов позволяет определять участки, важные для функционирования белков, а также эволюционную историю сравниваемых видов

Гомологичные белки (выполняющие одну функцию и, предположительно, имеющие общее эволюционное происхождение, например, гемоглобины) разных организмов имеют во многих местах цепи различные аминокислотные остатки, называемые вариабельными, в противоположность консервативным, общим остаткам. По степени гомологии возможна оценка эволюционного расстояния между таксонами, к которым принадлежат сравниваемые организмы.

Уровни структуры белков: 1 — первичная, 2 — вторичная, 3 — третичная, 4 — четвертичная

Уровни структуры белка

Кроме последовательности аминокислот полипептида (первичной структуры), крайне важна трёхмерная структура белка, которая формируется в процессе фолдинга (от англ. folding), «сворачивание»). Трёхмерная структура формируется в результате взаимодействия структур более низких уровней. Выделяют четыре уровня структуры белка[12]:

  • Первичная структура — последовательность аминокислот в полипептидной цепи. Важными особенностями первичной структуры являются консервативные мотивы — сочетания аминокислот, важных для функции белка. Консервативные мотивы сохраняются в процессе эволюции видов, по ним можно предсказать функцию неизвестного белка.
  • Вторичная структура — локальное упорядочивание фрагмента полипептидной цепи, стабилизированное водородными связями и гидрофобными взаимодействиями. Ниже приведены некоторые распространённые типы вторичной структуры белков:
  • α-спирали — плотные витки вокруг длинной оси молекулы, один виток составляют 3,6 аминокислотных остатка, спираль стабилизирована водородными связями между H и O пептидных групп, отстоящих друг от друга на 4 звена. Спираль построена исключительно из одного типа стереоизомеров аминокислот (L), хотя она может быть как левозакрученной, так и правозакрученной, в белках преобладает правозакрученная. Спираль нарушают электростатические взаимодействия глутаминовой кислоты, лизина, аргинина, близкорасположенные аспарагин, серин, треонин и лейцин могут стерически мешать образованию спирали, пролин вызывает изгиб цепи и также нарушает α-спирали.
  • β-листы (складчатые слои) — несколько зигзагообразных полипептидных цепей, в которых водородные связи образуются между относительно удалёнными друг от друга в первичной структуре аминокислотами или разными цепями белка, а не близко расположенными, как имеет место в α-спирали. Эти цепи обычно направлены N-концами в противоположные стороны (антипараллельная ориентация). Для образования β-листов важны небольшие размеры R-групп аминокислот, преобладают обычно глицин и аланин.
  • π-спирали;
  • 310-спирали;
  • неупорядоченные фрагменты.
Разные способы изображения трёхмерной структуры белка на примере фермента триозофосфатизомеразы. Слева — «палочковая» модель, с изображением всех атомов и связей между ними; цветами показаны элементы. В середине изображены структурные мотивы, α-спирали и β-листы. Справа изображена контактная поверхность белка, на основании Ван-дер-Ваальсовых радиусов атомов; цветами показаны особенности активности участков
Третичная структура 
 — пространственное строение полипептидной цепи — взаимное расположение элементов вторичной структуры, стабилизированное взаимодействием между боковыми цепями аминокислотных остатков. В стабилизации третичной структуры принимают участие:

Белки разделяют на группы согласно их трёхмерной структуре. Например, изображённый на картинке справа белок, триозофосфатизомераза, состоит из восьми α-спиралей, расположенных на внешней поверхности структуры и восьми параллельных β-слоёв внутри структуры. Белки с подобным тёхмерным строением называются αβ-баррелы (от англ. barrel — бочка) [1].

Четверичная структура 
 — субъединичная структура белка. Взаимное расположение нескольких полипептидных цепей в составе единого белкового комплекса.

Также выделяют:

  • Трёхмерную структуру белка — набор пространственных координат, составляющих белок атомов.
  • Субъединичную (доменную) структуру белка — последовательность участков белка, имеющих известную функцию или определённую трёхмерную структуру.
  • Гидрофобное ядро, обеспечивающее сворачивание белка.
Изображение модели комплекса бактериальных шаперонов GroES и GroEL (вид сверху). Аггрегированный белок поступает в центральную полость комплекса, где в результате гидролиза АТФ происходит изменение его структуры

Образование и поддержание структуры белков в живых организмах

Основная статья: Шапероны

Способность белков восстанавливать правильную трёхмерную структуру после денатурации позволила выдвинуть гипотезу о том, что вся информация о конечной структуре белка содержится в его аминокислотной последовательности. В настоящее время общепризнана теория о том, что в результате эволюции стабильная конформация белка обладает минимальной свободной энергией по сравнению с другими возможными конформациями этого полипептида [13].

Тем не менее, в клетках существует группа белков, функция которых — обеспечение восстановления структуры белков после повреждения, а также создание и диссоциация белковых комплексов. Эти белки называются шаперонами. Концентрация многих шаперонов в клетке возрастает при резком повышении температуры окружающей среды, поэтому они относятся к группе Hsp (англ. heat shock proteins — белки теплового шока)[14]. Важность нормальной работы шаперонов для функционирования организма может быть проиллюстрирована на примере шаперона, α-кристаллина, входящего в состав хрусталика глаза человека. Мутации в этом белке приводят к помутнению хрусталика из-за аггрегирования белков и, как результат, к катаракте [15].

Синтез белков

Химический синтез

Короткие белки могут быть синтезированы химическим путём с помощью группы методов, которые используют органический синтез — например, химическое лигирование[16]. Большинство методов химического синтеза проходят в направлении от С-конца к N-концу, в противоположность биосинтезу. Таким образом можно получить короткий иммунногенный пептид (эпитоп), необходимый для получения антител путём инъекции в животных, или получения гибридо́м; химический синтез также используется для получения ингибиторов некоторых ферментов [17]. Химический синтез позволяет вводить искусственные, то есть не встречающиеся в обычных белках аминокислоты — например, присоединять флюоресцентные метки к боковым цепям аминокислот. Однако химические методы синтеза неэффективны при длине белков более 300 аминокислот; кроме того, искусственные белки могут иметь неправильную третичную структуру, и у аминокислот искусственных белков отсутствуют посттрансляционные модификации.

Биосинтез белков

Основная статья: Биосинтез белка

Универсальный способ: рибосомный синтез

Молекулярная модель малой (слева) и большой (справа) субъединиц бактериальной рибосомы — молекулярной машины, синтезирующей белки. Голубым цветом показаны белки в составе рибосомы, но основную структурную роль выполняет рРНК

Белки синтезируются живыми организмами из аминокислот на основе информации, закодированной в генах. Каждый белок состоит из уникальной последовательности аминокислот, которая определяется нуклеотидной последовательностью гена, кодирующего данный белок. Генетический код составляется из трёхбуквенных «слов», называемых кодонами; каждый кодон отвечает за присоединение к белку одной аминокислоты: например, сочетание АУГ соответствует метионину. Поскольку ДНК состоит из четырёх типов нуклеотидов, то общее число возможных кодонов равно 64; а так как в белках используется 20 аминокислот, то многие аминокислоты определяются более, чем одним кодоном. Гены, кодирующие белки сначала транскрибируются в последовательность нуклеотидов матричной РНК (мРНК) белками РНК-полимеразами.

У прокариот мРНК может считываться рибосомами в аминокислотную последовательность белков сразу после транскрипции, а у эукариот она транспортируется из ядра в цитоплазму, где находятся рибосомы. Скорость синтеза белков выше у прокариот и может достигать 20 аминокислот в секунду [18].

Процесс синтеза белка с мРНК называется трансляцией. Во время начальной стадии биосинтеза белков, инициации, обычно метиониновый кодон узнаётся малой субъединицей рибосомы, к которой при помощи белковых факторов инициации присоединена метиониновая транспортная РНК (тРНК). После узнавания стартового кодона к малой субъединице присоединяется большая субъединица и начинается вторая стадия трансляции — элонгация. При каждом движении рибосомы от 5' к 3' концу мРНК считывается один кодон путём образования водородных связей между тремя нуклеотидами (кодоном) мРНК и комплементарным ему антикодоном транспортной РНК, к которой присоединена соответствующая аминокислота. Синтез пептидной связи катализируется рибосомальной РНК рРНК, образующей пептидилтрансферазный центр рибосомы. Рибосомальная РНК (рРНК) катализирует образование пептидной связи между последней аминокислотой растущего пептида и аминокислотой, присоединённой к тРНК, позиционируя атомы азота и углерода в положении, благоприятном для прохождения реакции. Ферменты аминоацил-тРНК-синтетазы присоединяют аминокислоты к их тРНК. Третья, и последняя стадия трансляции, терминация, происходит при достижении рибосомой стоп-кодона, после чего белковые факторы терминации гидролизуют последнюю тРНК от белка, прекращая его синтез. Таким образом, в рибосомах белки всегда синтезируются от N- к C- концу.

Нерибосомный синтез

У низших грибов и некоторых бактерий существует менее распространённый способ биосинтеза белков, который не требует участия рибосом. Синтез пептидов, обычно вторичных метаболитов, проводится высокомолекулярным белковым комплексом, так называемой НРС-синтазой. НРС-синтаза обычно состоит из нескольких доменов или отдельных белков, осуществляющих селекцию аминокислот, образование пептидной связи, высвобождение синтезированного пептида и, иногда, домен, способный изомеризовать L-аминокислоты (нормальная форма) в D-форму.[19][20]

Внутриклеточный транспорт и сортировка белков

Основная статья: Внутриклеточная сортировка белков
Синтезируемые в цитоплазме на рибосомах белки должны попадать в разные компартменты клетки — ядро, митохондрии, ЭПР, аппарат Гольджи, лизосомы и др., а некоторые белки должны попасть во внеклеточную среду. Для попадания в определенный компартмент белок должен обладать специфической меткой. В большинстве случаев такой меткой является часть аминокислотной последовательности самого белка (лидерный пептид, или сигнальная последовательность белка). В некоторых случаях меткой служат посттрансляционно присоединенные к белку олигосахариды. Транспорт белков в ЭПР осуществляется по мере их синтеза, так как рибосомы, синтезирующие белки с сигнальной последовательностью для ЭПР, «садятся» на специальные транслокационные комплексы на мембране ЭПР. Из ЭПР в аппарат Гольджи, а оттуда в лизосомы, на внешнюю мембрану или во внеклеточную среду белки попадают путем везикулярного транспорта. В ядро белки, обладающие сигнальной последовательностью для ядра, попадают через ядерные поры. В митохондрии и хлоропласты белки, обладающие соответствующими сигнальными последовательностями, попадают через специфические белковые поры-транслокаторы при участии шаперонов.

Посттрансляционная модификация белков

Молекулы убиквитина (оранжевые и розовые) присоединены к белку Src (голубой), предвещая его деградацию

После завершения трансляции и высвобождения белка из рибосомы аминокислоты в составе полипептидной цепи подвергаются разнообразным химическим модификациям. Примерами посттрансляционной модификации являются:

  • присоединение различных функциональных групп (ацетил-, метил- и фосфатных групп);
  • присоединение липидов и углеводородов;
  • изменение стандартных аминокислот на нестандартные (образование цитруллина);
  • образование структурных изменений (образование дисульфидных мостиков между цистеинами);
  • удаление части белка как в начале (сигнальная последовательность), так и в отдельных случаях в середине (инсулин);
  • добавление небольших белков, которые влияют на деградацию белков (сумоилирование и убиквитинирование).

При этом тип модификации может быть как универсальным (добавление цепей, состоящих из мономеров убиквитина, служит сигналом для деградации этого белка протеосомой), так и специфическим для данного белка [21]. В то же время один и тот же белок может подвергаться многочисленным модификациям. Так, гистоны (белки, входящие в состав хроматина у эукариот) в разных условиях могут подвергаться до 150 различных модификаций [22].

Функции белков в организме

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки — необходимые компоненты всех живых организмов, и участвуют в каждом внутреннем процессе клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур — органелл или секретируются во внеклеточное пространство для обмена сигналами между клетками и гидролиза пищевых субстратов. Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза — фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК, но и регулирует транскрипцию нескольких генов[23].

Молекулярная модель фермента уреазы бактерии Helicobacter pylori

Каталитическая функция

Основная статья: Ферменты

Наиболее хорошо известная роль белков в организме — катализ различных химических реакций. Ферменты — группа белков, обладающая специфическими каталитическими свойствами, то есть каждый фермент катализирует одну или несколько сходных реакций. Ферменты катализируют реакции расщепления сложных молекул (катаболизм) и их синтеза (анаболизм), а также репликации и репарации ДНК и синтезе РНК. Известно несколько тысяч ферментов; среди них такие, как например пепсин, расщепляют белки в процессе пищеварения. В процесс пострансляционной модификации некоторые ферменты добавляют или удаляют химические группы на других белках. Известно около 4000 реакций, катализируемых белками[24]. Ускорение реакции в результате ферментативного катализа иногда огромно: например, реакция, катализируемая ферментом оротат-карбоксилазой протекает в 1017 быстрее некатализируемой (78 миллионов лет без фермента, 18 миллисекунд с участием фермента)[25]. Молекулы, которые присоединяются к ферменту и изменяются в результате реакции, называются субстратами.

Хотя ферменты обычно состоят из сотен аминокислот, только небольшая часть из них взаимодействует с субстратом, и еще меньшее количество — в среднем 3-4 аминокислоты, часто расположенные далеко друг от друга в первичной аминокислотной последовательности — напрямую участвуют в катализе[26]. Часть фермента, которая присоединяет субстрат и содержит каталитические аминокислоты, называется активным центром фермента.

Структурная функция

Основная статья: Фибриллярные белки

Структурные белки, как своего рода арматура, придают форму жидкому внутреннему содержимому клетки. Большинство структурных белков являются филаментозными белками: например, мономеры актина и тубулина — это глобулярные, растворимые белки, но после полимеризации они формируют длинные нити, из которых состоит цитоскелет, позволяющий клетке поддерживать форму[27]. Коллаген и эластин — основные компоненты соединительной ткани (например, хряща), а из другого структурного белка кератина состоят волосы, ногти, перья птиц и некоторые раковины.

Мышиное антитело против холеры, присоединённое к углеводородному антигену (вверху)

Защитная функция

Основная статья: Антитела

Существуют несколько видов защитных функций белков:

  1. Физическая защита. В ней принимает участие коллаген, белок, поддерживающего структуру кожи. Состоит из хондроитина и глюкозамина.
  2. Химическая защита. Связывание химических токсинов белковыми молекулами — дезинтоксикация.
  3. Иммунная защита. Защита с помощью иммуноглобулинов

Белки, входящие в состав крови, участвуют в защитном ответе организма как на повреждение, так и на атаку патогенов. Примерами первой группы белков служат фибриногены и тромбины[28], участвующие в свёртывании крови, а антитела (иммуноглобулины), нейтрализуют бактерии, вирусы или чужеродные белки. Антитела, входящие в состав адаптативной иммунной системы, присоединяются к чужеродным для данного организма веществам, антигенам, и тем самым нейтрализуют их, направляя к местам уничтожения. Антитела могут секретироваться в межклеточное пространство или закрепляться в мембранах специализированных В-лимфоцитов, которые называются плазмоцитами[29]. В то время как ферменты имеют ограниченное сродство к субстрату, поскольку слишком сильное присоединение к субстрату может мешать протеканию катализируемой реакции, стойкость присоединения антител к антигену ничем не ограничено [30].

Регуляторная функция

Многие процессы в организме регулируются небольшими белковыми молекулами, полипептидными гормонами и цитокинами. Примером таких белков служит, соответственно, инсулин, который регулирует концентрацию глюкозы в крови, и фактор некроза опухолей, который передаёт сигналы воспаления между клетками организма[31]. На внутриклеточном уровне транскрипция генов определяется присоединением факторов транскрипции — белков-активаторов и белков-репрессоров к регуляторным последовательностям генов. На уровне трансляции считывание многих мРНК также регулируется присоединением белковых факторов [32], а деградация РНК и белков также проводится специализированными белковыми комплексами [33]. Важнейшую роль в регуляции внутриклеточных процессов играют протеинкиназы — ферменты, которые активируют или подавляют активность других белков путем присоединения к ним фосфатных групп.

Структура миоглобина с выделенными α спиралями.

Транспортная функция

Основная статья: Транспортные белки

Растворимые белки, участвующие в транспорте малых молекул, должны иметь высокое сродство (афинность) к субстрату, когда он присутствует в высокой концентрации, и легко его высвобождать в местах низкой концентрации субстрата. Примером транспортных белков можно назвать гемоглобин, который переносит кислород из лёгких к остальным тканям и углекислый газ от тканей к лёгким, а также гомологичные ему белки, найденные во всех царствах живых организмов [34].

Некоторые мембранные белки участвуют в транспорте малых молекул через мембрану клетки, изменяя её проницаемость. Липидный компонент мембраны водонепроницаем (гидрофобен), что предотвращает диффузию полярных или заряженных (ионы) молекул. Мембранные транспортные белки принято подразделять на белки-каналы и белки-переносчики. Белки-каналы содержат внутренние заполненные водой поры, которые позволяют ионам (через ионные каналы) или молекулам воды (через белки-аквапорины) перемещаться внутрь или наружу. Многие ионные каналы специализируются на транспорте только одного иона; так, калиевые и натриевые каналы часто различают эти сходные ионы и пропускают только один из них [35]. Белки-переносчики связывают, подобно ферментам, каждую переносимую молекулу или ион и, в отличие от каналов, могут осуществлять активный транспорт с использованием энергии АТФ. «Электростанция клетки» — АТФ-синтаза, которая осуществляет синтез АТФ за счёт протонного градиента, также может быть отнесена к мембранным транспортным белкам [36].

Запасная (резервная) функция белков

К таким белкам относятся так называемые резервные белки, которые запасаются в качестве источника энергии и вещества в семенах растений и яйцеклетках животных; белки третичных оболочек яйца (овальбумины) и основной белок молока (казеин) также выполняют, главным образом, питательную функцию. Ряд других белков используется в организме в качестве источника аминокислот, которые в свою очередь являются предшественниками биологически активных веществ, регулирующих процессы метаболизма.

Рецепторная функция

Основная статья: Клеточный рецептор

Белковые рецепторы могут как находиться в цитоплазме, так и встраиваться в клеточную мембрану. Одна часть молекулы рецептора воспринимает сигнал, который с помощью конформационных изменений передаётся на другую часть молекулы, активирующую передачу сигнала на другие клеточные компоненты. У мембранных рецепторов часть молекулы, связывающаяся с сигнальной молекулой, находится на поверхности клетки, а домен, передающий сигнал, внутри [37].

Движение молекулы миозина при мышечном сокращении

Моторная и сократительные функции

Целый класс моторных белков обеспечивает движения организма (например, сокращение мышц, в том числе локомоцию (миозин), перемещение клеток внутри организма (например, амебоидное движение лейкоцитов), а также активный и направленный внутриклеточный транспорт (кинезин, динеин). Динеины и кинезины проводят транспортировку молекул (так называемого карго) вдоль микротрубочек с использованием гидролиза АТФ в качестве источника энергии. Динеины переносят карго из периферических частей клетки по направлению к центросоме, кинезины в противоположном направлении [38][39]. Цитоплазматические варианты миозина могут перемещать карго вдоль микрофиламентов.

Белки в обмене веществ

Большинство микроорганизмов и растений могут синтезировать 20 стандартных аминокислот, а также дополнительные (нестандартные) аминокислоты, например, цитруллин. Но если аминокислоты есть в окружающей среде, даже микроорганизмы сохраняют энергию путём транспорта аминокислот внутрь клеток и выключения их биосинтетических путей[40].

Аминокислоты, которые не могут быть синтезированы животными, называются незаменимыми. Основные ферменты в биосинтетических путях, например, аспартаткиназа, которая катализирует первый этап в образовании лизина, метионина и треонина из аспартата, отсутствуют у животных.

Животные, в основном, получают аминокислоты из белков, содержащихся в пище. Белки разрушаются в процессе пищеварения, который обычно начинается с денатурации белка путём помещения его в кислотную среду и гидролиза с помощью ферментов, называемых протеазами. Некоторые аминокислоты, полученные в результате пищеварения, используются для синтеза белков организма, а остальные превращаются в глюкозу в процессе глюконеогенеза или используются в цикле Кребса. Использование белка в качестве источника энергии особенно важно в условиях голодания, когда собственные белки организма, в особенности мускулов, служат источником энергии[41]. Аминокислоты также являются важным источником азота в питании организма.

В мире не существует единых представлений о количественной характеристике норм потребления белков. Микрофлора толстого кишечника синтезирует аминокислоты, которые не учитываются при составлении белковых норм.

Методы количественного определения белков

Для определения количества белка в образце используется ряд методик:

См. также

Ссылки

Литература

  • Альбертс Б., Брей Д., Льюис Дж. и др. Молекулярная биология клетки. В 3 томах. — М.: Мир, 1994. — ISBN 5-03-001986-3
  • Ленинджер А. Основы биохимии. В 3 томах. — М.: Мир, 1985.
  • Страйер Л. Биохимия. В 3 томах. — М.: Мир, 1984.

Примечания

  1. Muirhead H., Perutz M. Структура гемоглобина. = Structure of hemoglobin. A three-dimensional fourier synthesis of reduced human hemoglobin at 5.5 A resolution. // Nature : журнал. — 1963. — Т. 199. — № 4894. — С. 633—638.
  2. Kendrew J., Bodo G., Dintzis H., Parrish R., Wyckoff H., Phillips D. Трёхмерная модель молекулы миоглобина, полученная по результатам рентгеновских исследований. = A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. // Nature : журнал. — 1958. — Т. 181. — № 4610. — С. 662—666.
  3. Leicester, Henry . «Berzelius, Jöns Jacob». Dictionary of Scientific Biography 2. New York: Charles Scribner’s Sons. 90-97 (1980). ISBN 0684101149
  4. Биоорганическая химия. — Просвещение, 1987.
  5. Белки // Химическая энциклопедия. — Советская энциклопедия, 1988.
  6. 1 2 N. H. Barton, D. E. G. Briggs, J. A. Eisen «Evolution», Cold Spring Harbor Laboratory Press, 2007 — P. 38. ISBN 978-0879696849
  7. Fulton A, Isaacs W (1991). "Titin, a huge, elastic sarcomeric protein with a probable role in morphogenesis". Bioessays 13 (4): 157-61. PMID 1859393.
  8. http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.4.23.1
  9. S J Singer. The Structure and Insertion of Integral Proteins in Membranes. Annual Review of Cell Biology. Volume 6, Page 247—296. 1990
  10. Страер Л., Биохимия в 3 томах. — М.: Мир, 1984
  11. de Bolster, M.W.G. Glossary of Terms Used in Bioinorganic Chemistry: Prosthetic groups. International Union of Pure and Applied Chemistry (1997). Проверено 30 октября 2007.
  12. Ленинджер А. Основы биохимии, в 3 томах. — М.: «Мир», 1985.
  13. Anfinsen C. (1973). "Principles that Govern the Folding of Protein Chains.". Science 181: 223-229.
  14. Ellis RJ, van der Vies SM (1991). "Molecular chaperones". Annu. Rev. Biochem. 60: 321-47. DOI:10.1146/annurev.bi.60.070191.001541. PMID 1679318.
  15. Sun Y, MacRae TH. (2005). "The small heat shock proteins and their role in human disease.". FEBS J. 60: 2613-27. PMID 115943797.
  16. Wilken J, Kent SB.. Curr Opin Biotechnol. Chemical protein synthesis. 1998.9(4):412-26
  17. Dawson PE, Kent SB. Synthesis of native proteins by chemical ligation. Annu Rev Biochem. 2000;69:923-60
  18. Dobson CM. (2000). The nature and significance of protein folding. In Mechanisms of Protein Folding 2nd ed. Ed. RH Pain. Frontiers in Molecular Biology series. Oxford University Press: New York, NY.
  19. Stack D, Neville C, Doyle S. Nonribosomal peptide synthesis in Aspergillus fumigatus and other fungi. Microbiology. 2007 May;153(Pt 5):1297-306
  20. Welker M, von Döhren H. Cyanobacterial peptides — nature’s own combinatorial biosynthesis. FEMS Microbiol Rev. 2006 Jul;30(4):530-63
  21. Demartino GN, Gillette TG. Proteasomes: machines for all reasons. Cell. 2007 May 18;129(4):659-62
  22. Bronner C, Chataigneau T, Schini-Kerth VB, Landry Y.The «Epigenetic Code Replication Machinery», ECREM: a promising drugable target of the epigenetic cell memory. Curr Med Chem. 2007;14(25):2629-41
  23. Yannay-Cohen N, Razin E. (2000). "Translation and transcription: the dual functionality of LysRS in mast cells.". Mol Cells. 22: 127-32. PMID 17085962.
  24. Bairoch A. (2000). "The ENZYME database in 2000". Nucleic Acids Res 28: 304-305. PMID 10592255.
  25. Radzicka A, Wolfenden R. (1995). "A proficient enzyme.". Science 6 (267): 90-931. PMID 7809611.
  26. The Catalytic Site Atlas at The European Bioinformatics Institute
  27. Erickson HP. Evolution of the cytoskeleton. Bioessays. 2007:668-77
  28. Wolberg AS (2007). «Thrombin generation and fibrin clot structure.». Blood Rev. 21 (3): 131-42.PMID 17208341.
  29. ^ J. Li, D.R. Barreda, Y.-A. Zhang, H. Boshra, A.E. Gelman, S. LaPatra, L. Tort & J.O. Sunyer (2006). «B lymphocytes from early vertebrates have potent phagocytic and microbicidal abilities». Nature Immunology 7: 1116—1124. PMID 16980980.
  30. Felix NJ, Allen PM. Specificity of T-cell alloreactivity. Rev Immunol. 2007 Dec;7(12):942-53
  31. Повещенко АФ., Абрамов ВВ., Козлов ВВ. Цитокины — факторы нейроэндоктринной регуляции. Успехи Физиологических Наук. 2007 — 38(3):40-6
  32. Hinnebusch AG. Translational regulation of GCN4 and the general amino acid control of yeast. Annu Rev Microbiol. 2005;59:407-50
  33. Anderson P, Kedersha N., RNA granules. Cell Biol. 2006:172(6):803-8
  34. Wittenberg JB. On optima: the case of myoglobin-facilitated oxygen diffusion Gene. 2007 Aug 15;398(1-2):156-61.
  35. Driessen AJ, Nouwen N. Protein Translocation Across the Bacterial Cytoplasmic Membrane.Annu Rev Biochem. 2007 Dec 13 [Epub ahead of print]
  36. Drory O, Nelson N. (2006). "The emerging structure of vacuolar ATPases.". Physiology (Bethesda). 21: 317-25. PMID 16990452.
  37. Dupré DJ, Hébert TE. Biosynthesis and trafficking of seven transmembrane receptor signalling complexes.Cell Signal. 2006.(10):1549-59
  38. Karp G. Cell and Molecular Biology: Concepts and Experiments, Fourth ed, pp. 346—358. John Wiley and Sons, Hoboken, NJ. 2005.
  39. Schroer, Trina A. Dynactin. Annual Review of Cell and Developmental Biology 2004 20, 759—779. PMID 15473859
  40. Voet D, Voet JG. Biochemistry Vol 1 3rd ed., Hoboken, NJ.(2004).
  41. Brosnan J (2003). "Interorgan amino acid transport and its regulation". J Nutr 133 (6 Suppl 1): 2068S-72S. PMID 12771367.


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?
Синонимы:

Полезное


Смотреть что такое "Протеин" в других словарях:

  • ПРОТЕИН — (ново лат., греч., от protos первый). 1) основное вещество белковины, казеина, фибрина и мочевины, как растительных, так и животных. 2) насекомое сем. жесткокрылых, водится на цветах и грибах в Европе, иначе хвостовертка. Словарь иностранных слов …   Словарь иностранных слов русского языка

  • протеин — созин, белок, кератин, глобулин, глутин, склеропротеин, эластин, кафирин, пропердин Словарь русских синонимов. протеин сущ., кол во синонимов: 16 • альдеслейкин (1) • …   Словарь синонимов

  • протеин — а, м. protéine <гр. protos первый. хим., биол. Белки, состоящие только из аминокислот (иначе называемые простые белки), являющиеся основной частью клеток животных, растений и микроорганизмов. Крысин 1998. К тому же оба конца эти тупы, забиты с …   Исторический словарь галлицизмов русского языка

  • ПРОТЕИН — муж., хим. вещество, открытое в животных телах. Толковый словарь Даля. В.И. Даль. 1863 1866 …   Толковый словарь Даля

  • Протеин А — белок, входящий в состав клеточной стенки некоторых штаммов стафилококков (напр., Cowan I, NCTC8530). Вступает в связь с Fc рецептором IgGl,2,4 и иногда с человеческим IgM. Стафилококки, содержащие этот белок, используют как носители Ат в… …   Словарь микробиологии

  • протеин — протеин. Произносится [протэин] …   Словарь трудностей произношения и ударения в современном русском языке

  • протеин S — Витамин К зависимый плазменный белок, активизирующий белок С [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN protein S …   Справочник технического переводчика

  • протеин С — Естественный антикоагулянт [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN protein C …   Справочник технического переводчика

  • Протеин w — * пратэін w * protein w ДНК топоизомераза I (см.) E. coli …   Генетика. Энциклопедический словарь

  • Протеин C — Не путать с С реактивным белком. протеин C …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»