Почвообразование

Почвообразование
Профиль пахотной каштановой почвы, Волгоградская область, Россия

Почва — поверхностный слой литосферы Земли, обладающий плодородием и представляющий собой полифункциональную, гетерогенную, открытую, четырёхфазную (твёрдая, жидкая, газообразная фазы и живые организмы) структурную систему, образовавшуюся в результате выветривания горных пород и жизнедеятельности организмов.[1] Её рассматривают как особую природную мембрану (биогеомембрану), регулирующую взаимодействие между биосферой, гидросферой и атмосферой Земли. Почвы формируются под влиянием климата, рельефа, исходной почвообразующей породы, а также живых организмов и изменяются со временем.

Почва (определение по ГОСТу) — самостоятельное естественноисторическое органоминеральное природное тело, возникшее на поверхности Земли в результате длительного воздействия биотических, абиотических и антропогенных факторов, состоящее из твердых минеральных и органических частиц, воды и воздуха и имеющее специфические генетико-морфологические признаки, свойства, создающие для роста и развития растений соответствующие условия.[2]

Изучением почв занимается наука почвоведение.

Содержание

Морфология

Профиль бурозёма (камбисоль по классификации ФАО) с подстилкой, гумусовым и метаморфическим горизонтами

Термины по ГОСТу:
Почвенный профиль[2] — совокупность генетически сопряженных и закономерно сменяющихся почвенных горизонтов, на которые расчленяется почва в процессе почвообразования.
Почвенный горизонт[2] — специфический слой почвенного профиля, образовавшийся в результате воздействия почвообразовательных процессов.
Почвенный покров[2] — совокупность почв, покрывающих земную поверхность.

В процессе почвообразования, прежде всего под действием вертикальных (восходящих и нисходящих) потоков вещества и энергии, а также неоднородности распределения живого вещества, исходная порода расслаивается на генетические горизонты. Часто почвы формируются на исходно вертикально неоднородных двучленных породах, что откладывает отпечаток на почвообразование и сочетание горизонтов.

Горизонты рассматриваются как однородные (в масштабе всей почвенной толщи) части почвы, взаимосвязанные и взаимообусловленные, отличающиеся по химическому, минералогическому, гранулометрическому составу, физическим и биологическим свойствам. Комплекс горизонтов, характерный для данного типа почвообразования, образует почвенный профиль.

Для горизонтов принято буквенное обозначение, позволяющее записывать строение профиля. Например, для дерново-подзолистой почвы: A0-A0A1-A1-A1A2-A2-A2B-BC-C[3].

Выделяются следующие типы горизонтов[4]:

  • Органогенные — (подстилка (A0, O), торфяной горизонт (T), перегнойный горизонт (Ah, H), дернина (Ad), гумусовый горизонт (A) и т. д.) — характеризующиеся биогенным накоплением органического вещества.
  • Элювиальные — (подзолистый, лессивированный, осолоделый, сегрегированный горизонты; обозначаются буквой E с индексами, либо A2) — характеризующиеся выносом органических и/или минеральных компонентов.
  • Иллювиальные — (B с индексами) — характеризующиеся накоплением вынесенного из элювиальных горизонтов вещества.
  • Метаморфические — (Bm) — образуются при трансформации минеральной части почвы на месте.
  • Гидрогенно-аккумулятивные — (S) — образуются в зоне максимального накопления веществ (легкорастворимые соли, гипс, карбонаты, оксиды железа и т. д.), приносимых грунтовыми водами.
  • Коровые — (K) — горизонты, сцементированные различными веществами (легкорастворимые соли, гипс, карбонаты, аморфный кремнезём, оксиды железа и др.).
  • Глеевые — (G) — с преобладающими восстановительными условиями.
  • Подпочвенные — материнская порода (C), из которой образовалась почва, и залегающая ниже подстилающая порода (D) иного состава.

Твёрдая фаза почв

Почва высокодисперсна и обладает большой суммарной поверхностью твёрдых частиц: от 3-5 м²/г у песчаных до 300—400 м²/г у глинистых. Благодаря дисперсности почва обладает значительной пористостью: объём пор может достигать от 30 % общего объёма в заболоченных минеральных почвах до 90 % в органогенных торфяных. В среднем же этот показатель составляет 40-60 %.

Плотность твёрдой фазы (ρs) минеральных почв колеблется от 2,4 до 2,8 г/см³, органогенных: 1,35-1,45 г/см³. Плотность почвыb) ниже: 0,8—1,8 г/см³ и 0,1—0,3 г/см³ соотвественно. Пористость (порозность, ε) связана с плотностями по формуле:

ε = 1 — ρbs

Минеральная часть почвы

Шлиф почвенного агрегата под микроскопом

Минеральный состав

Около 50-60 % объёма и до 90-97 % массы почвы составляют минеральные компоненты. Минеральный состав почвы отличается от состава породы, на которой она образовалась, это отличие тем сильнее, чем старше почва.

Минералы, являющиеся остаточным материалом в ходе выветривания и почвообразования, носят название первичных. В зоне гипергенеза большинство из них неустойчиво и с той или иной скоростью разрушается. Одними из первых разрушаются оливин, амфиболы, пироксены, нефелин. Более устойчивыми являются полевые шпаты, составляющие до 10-15 % массы твёрдой фазы почвы. Чаще всего они представлены относительно крупными песчаными частицами. Высокой стойкостью отличаются эпидот, дистен, гранат, ставролит, циркон, турмалин. Содержание их обычно незначительно, однако позволяет судить о происхождении материнской породы и времени почвообразования. Наибольшую устойчивость имеет кварц, который выветривается за несколько миллионов лет. Благодаря этому в условиях длительного и интенсивного выветривания, сопровождающегося выносом продуктов разрушения минералов, происходит его относительное накопление.

Почва характеризуется высоким содержанием вторичных минералов, образованных в результате глубокого химического преобразования первичных, или же синтезированных непосредственно в почве. Особенно важна среди них роль глинистых минераловкаолинита, монтмориллонита, галлуазита, серпентина и ряда других. Они обладают высокими сорбционными свойствами, большой ёмкостью катионного и анионного обмена, способностью к набуханию и удержанию воды, липкостью и т. д. Этими свойствами во многом обусловлена поглотительная способность почв, её структура и, в конечном счёте, плодородие.

Высоко содержание минералов-оксидов и гидрокисидов железа (лимонит, гематит), марганца (вернадит, пиролюзит, манганит), алюминия (гиббсит) и др., также сильно влияющие на свойства почвы — они участвуют в формировании структуры, почвенного поглощающего комплекса (особенно в сильно выветрелых тропических почвах), принимают участие в окислительно-восстановительных процессах. Большую роль в почвах играют карбонаты (кальцит, арагонит см. карбонатно-кальциевое равновесие в почвах). В аридных регионах в почве нередко накапиливаются легкорастворимые соли (хлорид натрия, карбонат натрия и др.), влияющие на весь ход почвообразовательного процесса.

Гранулометрический состав

Треугольник Ферре

В почвах могут находиться частицы диаметром как менее 0,001 мм, так и более нескольких сантиметров. Меньший диаметр частиц означает большую удельную поверхность, а это, в свою очередь — большие величины ёмкости катионного обмена, водоудерживающей способности, лучшую агрегированность, но меньшую порозность. Тяжёлые (глинистые) почвы могут иметь проблемы с воздухосодержанием, лёгкие (песчаные) — с водным режимом.

Для подробного анализа весь возможный диапазон размеров размеров делят на участки, называемые фракциями. Единой классификации частиц не существует. В российском почвоведении принята шкала Н. А. Качинского. Характеристика гранулометрического (механического) состава почвы даётся на основании содержания фракции физической глины (частиц менее 0,01 мм) и физического песка (более 0,01 мм) с учётом типа почвообразования.

В мире также широко применяется определение механического состава почвы по треугольнику Ферре: по одной стороне откладывается доля пылеватых (silt, 0,002-0,05 мм) частиц, по второй — глинистых (clay, <0,002 мм), по третьей — песчаных (sand, 0,05-2 мм) и находится место пересечения отрезков. Внутри треугольник разбит на участки, каждый из которых соответствует тому или иному гранулометрическому составу почвы. Тип почвообразования при этом не учитывается.

Органическая часть почвы

В почве содержится некоторое количество органического вещества. В органогенных (торфяных) почвах оно может преобладать, в большинстве же минеральных почв его количество не превышает нескольких процентов в верхних горизонтах.

В состав органического вещества почвы входят как растительные и животные остатки, не утратившие черт анатомического строения, так и отдельные химические соединения, называемые гумусом. В составе последнего находятся как неспецифические вещества известного строения (липиды, углеводы, лигнин, флавоноиды, пигменты, воска, смолы и т. д.), составляющие до 10-15 % всего гумуса, так и образующиеся из них в почве специфические гумусовые кислоты.

Гумусовые кислоты не имеют определённой формулы и представляют собой целый класс высокомолекулярных соединений. В советском и российском почвоведении они традиционно разделяются на гуминовые и фульвокислоты.

Элементный состав гуминовых кислот (по массе): 46-62 % C, 3-6 % N, 3-5 % H, 32-38 % O. Состав фульвокислот: 36-44 % C, 3-4,5 % N, 3-5 % H, 45-50 % O. В обоих соединениях присутствуют также сера (от 0,1 до 1,2 %), фосфор (сотые и десятые доли %). Молекулярные массы для гуминовых кислот составляют 20-80 кДа (минимальная 5 кДа, максимальная 650 кДа), для фульвокислот 4-15 кДа. Фульвокислоты подвижнее, растворимы на всём диапазоне pH (гуминовые выпадают в осадок в кислой среде). Отношение углерода гуминовых и фульвокислот (Cгк/Cфк) является важным показателем гумусового состояния почв.

В молекуле гуминовых кислот выделяют ядро, состоящее из ароматических колец, в том числе азотсодержащих гетероциклов. Кольца соединяются «мостиками» с двойными связями, создающими протяжённые цепи сопряжения, обуславливающие тёмную окраску вещества[5]. Ядро окружено периферическими алифатическими цепями, в том числе углеводородного и полипептидного типов. Цепи несут различные функциональные группы (гидроксильные, карбонильные, карбоксильные, аминогруппы и др.), что является причиной высокой ёмкости поглощения — 180—500 мг-экв/100 г.

О строении фульвокислот известно значительно меньше. Они имеют тот же состав функциональных групп, однако более высокую ёмкость поглощения — до 670 мг-экв/100 г.

Механизм формирования гумусовых кислот (гумификация) до конца не изучен. По конденсационной гипотезе[6] (М. М. Кононова, А. Г. Трусов) эти вещества синтезируются из низкомолекулярных органических соединений. По гипотезе Л. Н. Александровой[7] гумусовые кислоты образуются при взаимодействии высокомолекулярных соединений (белки, биополимеры), затем постепенно окисляются и расщепляются. Согласно обеим гипотезам в этих процессах принимают участие ферменты, образуемые преимущественно микроорганизмами. Есть предположение о чисто биогенном происхождении гумусовых кислот. По многим свойствам они напоминают тёмноокрашенные пигменты грибов.

Почвенная структура

Основные статьи: Почвенная структура, Агрегатный состав почв, Микроагрегатный состав почв

Термины по ГОСТу:

Структура почвы[2] - физическое строение твердой части и порового пространства почвы, обусловленное размером, формой, количественным соотношением, характером взаимосвязи и расположением как механических элементов, так и состоящих из них агрегатов.

Твердая часть почвы[2] - совокупность всех видов частиц, находящихся в почве в твердом состоянии при естественном уровне влажности.

Поровое пространство в почве[2] - разнообразные по размерам и форме промежутки между механическими элементами и агрегатами почвы, занятые воздухом или водой.

Минеральные частицы почвы всегда объединяются в агрегаты различной прочности, размеров и формы. Вся совокупность агрегатов, характерных для почвы, называется её структурой. Факторами образования агрегатов являются: набухание, сжатие и растрескивание почвы в ходе циклов увлажнения-иссушения и замерзания-оттаивания, коагуляция почвенных коллоидов (наиболее важна в этом роль органических коллоидов), цементация частиц малорастворимыми соединениями, образование водородных связей, связей между нескомпенсированными зарядами кристаллической решётки минералов, адсорбция, механическое сцепление частиц гифами грибов, актиномицетов и корнями растений, агрегация частиц при прохождении через кишечник почвенных животных.

Структура почвы оказывает влияние на проникновение воздуха к корням растений, удержание влаги, развитие микробного сообщества. В зависимости только от размера агрегатов урожай может меняться на порядок. Оптимальна для развития растений структура, в которой преобладают агрегаты размером от 0,25 до 7-10 мм (агрономически ценная структура). Важным свойством структуры является её прочность, особенно водоустойчивость.

Преобладающая форма агрегатов является важным диагностическим признаком почвы. Выделяют[8] округло-кубовидную (зернистую, комковатую, глыбистую, пылеватую), призмовидную (столбовидную, призмовидную, призматическую) и плитовидную (плитчатую, чешуйчатую) структуру, а также ряд переходных форм и градаций по размеру. Первый тип характерен для верхних гумусовых горизонтов и обуславливает большую порозность, второй — для иллювиальных, метаморфических горизонтов, третий — для элювиальных.

Новообразования и включения

Железистая конкреция из латеритного горизонта. Штат Минас-Жерайс, Бразилия
Основная статья: Почвенные новообразования

Новообразования — скопления веществ, образующиеся в почве в процессе её формирования.

Широко распространены новообразования железа и марганца, чья миграционная способность зависит от окислительно-восстановительного потенциала и контролируется организмами, в особенности бактериями. Они представлены конкрециями, трубками по ходам корней, корками и др. В некоторых случаях происходит цементация почвенной массы железистым материалом. В почвах, особенно аридных и семиаридных регионов, распростренены известковые новообразования: налёты, выцветы, псевдомицелий, конкреции, корковые образования. Новообразования гипса, также характерные для аридных областей, представлены налётами, друзами, гипсовыми розами, корками. Встречаются новообразования легкорастворимых солей, кремнезёма (присыпка в элювиально-иллювиально дифференцированных почвах, опаловые и халцедоновые прослои и коры, трубки), глинистых минералов (кутаны — натёки и корочки, образующиеся в ходе иллювиального процесса), часто вместе с гумусом.

К включениям относят любые объекты, находящиеся в почве, но не связанные с процессами почвообразования (археологическое находки, кости, раковины моллюсков и простейших, обломки породы, мусор). Неоднозначно отнесение к включениям, либо новообразованиям копролитов, червоточин, кротовин и прочих биогенных образований.

Жидкая фаза почв

Состояния воды в почве

Основная статья: Водный режим почв

Обычно большая часть воды в почве силами различной природы связывается частицами твёрдой фазы, что снижает её подвижность и доступность растениям и микроорганизмам. В первую очередь оказываются задействованными механизмы наиболее высокоэнергетического и прочного взаимодействия, затем, по мере насыщения почвы водой, начинают образовываться менее тесные связи. Влажности, при которых происходит изменение характера сил, связывающих воду с почвенными частицами, носят название энергетических констант.

Наиболее прочно связана с частицами адсорбционная влага. Она жа характеризуется наибольшим отличием от свободной воды: имеет повышенную плотность и вязкость, пониженные диэлектрическую проницаемость и способность растворять вещества. При её образовании выделяется тепловая энергия. Почва, находящаяся в равновесии с атмосферой, всегда содержит некоторое количество воды (гигроскопическая влажность), определённым образом зависящее от влажности воздуха. Наибольшему количеству воды, удерживаемому почвой адсорбционными силами соответствует максимальная адсорбционная влагоёмкость (МАВ), достигающаяся при влажности воздуха около 95 %.

Следующая энергетическая константа — максимальная молекулярная влагоёмкость или влажность разрыва капилляров (ММВ, ВРК). При иссушении почвы ВРК соответствует резкое падение подвижности воды, однако её свойства не отличаются от свободной.

С находящейся в почве капиллярной влагой связано две энергетических константы. Максимальная капиллярно-сорбционная влагоёмкость (МКСВ) или наименьшая влагоёмкость (НВ) или полевая (предельная полевая) влагоёмкость (ПВ, ППВ) соответствует максимальному количеству воды, которое может удерживаться в почве капиллярными силами в случае её поверхностного поступления. Если почва питается от грунтовых вод, то влажность, устанавливающаяся в зоне капиллярного подъёма, носит название капиллярной влагоёмкости (КВ). Сверх этого значения вода уже не связана с почвенными частицами, свободно стекает под действием силы тяжести и называется гравитационной. Полная влагоёмкость (ПВ) — влажность при полностью заполненных водой порах.

Также в почвенном воздухе присутствует парообразная вода. Часть воды является кристаллизационной или химически-связанной, для её удаления необходимо прокаливание почвы при температурах свыше 170 °C.

Почвенно-гидрологические константы, в отличие от энергетических, ориентированы на практическое использование. К ним относятся уже упоминавшиеся гигроскопическая влажность, максимальная гигроскопическая влажность (при 98 % влажности воздуха), а также ВРК и НВ (ПВ, ППВ), совпадающие с ММВ и МКСВ соответственно. Кроме того, измеряют влажность устойчивого завядания (ВЗ) — максимальную влажность почвы, при которой определённое растение не может поддерживать тургор даже в насыщенной парами воды атмосфере. Находится в диапазоне МАВ-ММВ (ВРК).

Термины по ГОСТу[2]:

  • Почвенная влага — вода, находящаяся в почве и выделяющаяся высушиванием почвы при температуре 105 °C до постоянной массы.
  • Влагоемкость почвы — величина, количественно характеризующая водоудерживающую способность почвы.
  • Набухание почвы — увеличение объема почвы в целом или отдельных структурных элементов при увлажнении.

Взаимодействие с твёрдой фазой

Почвенный поглощающий комплекс

Почва может удерживать поступившие в неё вещества по разным механизмам (механическая фильтрация, адсорбция мелких частиц, образование нерастворимых соединений, биологическое поглощение), важнейшим из которых является ионный обмен между почвенным раствором и поверхностью твёрдой фазы почвы. Твёрдая фаза за счёт сколов кристаллической решётки минералов, изоморфных замещений, наличия карбоксильных и ряда других функциональных групп в составе органического вещества заряжена преимущественно отрицательно, поэтому наиболее ярко выражена катионообменная способность почвы. Тем не менее, положительные заряды, обуславливающее анионный обмен, в почве также присутствуют.

Вся совокупность компонентов почвы, обладающих ионообменной способностью, называется почвенным поглощающим комплексом (ППК). Входящие в состав ППК ионы носят название обменных или поглощённых. Характеристикой ППК является ёмкость катионного обмена (ЕКО) — общее количество обменных катионов одного рода, удерживаемых почвой в стандартном состоянии — а также сумма обменных катионов, характеризующая природное состояние почвы и не всегда совпадающая с ЕКО.

Отношения между обменными катионами ППК не совпадают с отношениями между теми же катионами в почвенном растворе, то есть ионный обмен протекает селективно. Предпочтительнее поглощаются катионы с более высоким зарядом, а при их равенстве — с большей атомной массой, хотя свойства компонентов ППК могут несколько нарушать эту закономерность. Например, монтмориллонит поглощает больше калия, чем протонов водорода, а каолинит — наоборот.

Обменные катионы являются одним из непосредственных источников минерального питания растений, состав ППК отражается на образовании органоминеральных соединений, структуре почвы и её кислотности.

Почвенная кислотность

Основная статья: Кислотность почвы

Почвенный воздух

Живые организмы в почве

Почва - это среда обитания множества организмов. Наименьшими организмами являются бактерии, водоросли, грибки и одноклеточные организмы, обитающие в почвенных водах. В одном m³ может обитать до 100 000 миллиардов организмов. В почвенном воздухе обитают беспозвоночные насекомые, такие как клещи, пауки, жуки, ногохвостки и дождевые черви. Они питаются остатками растений, грибницей и другими организмами. В почве обитают и позвоночные животные, один из них это крот. Крот очень хорошо приспособлен к обитанию в абсолютно тёмной почве, поэтому он слеп.

Пространственная организация

В природе практически не бывает таких ситуаций, чтобы на много километров простиралась какая-нибудь одна почва с неизменными в пространстве свойствами. При этом различия почв обусловлены различиями в факторах почвообразования.

Закономерное пространственное размещение почв на небольших территориях называется структурой почвенного покрова (СПП). Исходной единицей СПП является элементарный почвенный ареал (ЭПА) — почвенное образование, внутри которого отсутствуют какие-либо почвенно-географические границы. Чередующиеся в пространстве и в той или иной степени генетически связанные ЭПА образуют почвенные комбинации.

Почвообразование

Почвообразующие факторы[2]:

  • Элементы природной среды: почвообразующие породы, климат, живые и отмершие организмы, возраст и рельеф местности,
  • а также антропогенная деятельность, оказывающие существенное влияние на почвообразование.

Первичное почвообразование

В русском почвоведении приведена концепция[9], что любая субстратная система, обеспечивающая рост и развитие растений «от семени до семени», есть почва. Идея дискуссионная, поскольку отрицает докучаевский принцип историчности, подразумевающий определенную зрелость почв и разделение профиля на генетические горизонты, но полезна в познании общей концепции развития почв.

Зачаточное состояние профиля почв до появления первых признаков горизонтов можно определять термином «инициальные почвы»[10]. Соответственно выделяется «инициальная стадия почвообразования» — от почвы «по Вески» до того времени, когда появится заметная дифференциация профиля на горизонты, и можно будет прогнозировать классификационный статус почвы. За термином «молодые почвы» предложено закрепить стадию «молодого почвообразования» — от появления первых признаков горизонтов до того времени, когда генетический (точнее, морфолого-аналитический) облик будет достаточно выраженным для диагностики и классификации с общих позиций почвоведения.

Генетические характеристики можно давать и до достижения зрелости профиля, с понятной долей прогностического риска, например, — «инициальные дерновые почвы»; «молодые проподзолистые почвы», «молодые карбонатные почвы». При таком подходе номенклатурные трудности разрешаются естественно, на базе общих принципов почвенно-экологического прогнозирования в соответствии с формулой Докучаева-Йенни (представление почвы как функции факторов почвообразования: S = f(cl, o, r, p, t …)).

Антропогенное почвообразование

В научной литературе для земель после горных работ и других нарушений почвенного покрова закрепилось обобщённое название «техногенные ландшафты», а изучение почвообразования в этих ландшафтах оформилось в «рекультивационное почвоведение»[11]. Был предложен также термин «технозёмы»[12], по сути представляющий попытку объединить Докучаевскую традицию «-зёмов» с техногенными ландшафтами.

Отмечается, что логичнее применять термин «технозём» к тем почвам, которые специально создаются в процессе технологии горных работ путем разравнивания поверхности и насыпания специально снятых гумусовых горизонтов или потенциально плодородных грунтов (лёсса). Использование этого термина для генетического почвоведения вряд ли оправданно, так как итоговым, климаксным продуктом почвообразования будет не новый «-зём», а зональная почва, например, дерново-подзолистая, или дерново-глеевая.

Для техногенно-нарушенных почв предлагалось использовать термины «инициальные почвы» (от «нуль — момента» до появления горизонтов) и «молодые почвы» (от появления до оформления диагностических признаков зрелых почв), указывающие на главную особенность таких почвенных образований — временные этапы их эволюции из недифференцированных пород в зональные почвы.

Единой общепринятой классификации почв не существует. Наряду с международной (Классификация почв ФАО и сменившая её в 1998 году WRB) во многих странах мира действуют национальные системы классификации почв, часто основанные на принципиально разных подходах.

В России к 2004 году специальной комиссией Почвенного института им. В. В. Докучаева, руководимой Л. Л. Шишовым, подготовлена новая классификация почв, являющаяся развитием классификации 1997 года. Однако российским почвоведами продолжает активно использоваться и классификация почв СССР 1977 года[1].

Из отличительных особенностей новой классификации можно назвать отказ от привлечения для диагностики факторно-экологических и режимных параметров, трудно диагностируемых и часто определяемых исследователем чисто субъективно, фокусирование внимания на почвенном профиле и его морфологических особенностях. В этом ряд исследователей видят отход от генетического почвоведения, делающего основной упор на происхождении почв и процессах почвообразования. В классификации 2004 года вводятся формальные критерии отнесения почвы к определённому таксону, привлекается понятие диагностического горизонта, принятое в международной и американской классификациях. В отличие от WRB и американской Soil Taxonomy, в российской классификации горизонты и признаки не равноценны, а строго ранжированы по таксономической значимости. Бесспорно важным нововведением классификации 2004 года стало включение в неё антропогенно-преобразованных почв.

В американской школе почвоведов используется классификация Soil Taxonomy, имеющая распространение также в других странах. Характерной её особенностью является глубокая проработка формальных критериев отнесения почв к тому или иному таксону. Используются названия почв, сконструированные из латинских и греческих корней. В классификационную схему традиционно включаются почвенные серии — группы почв, отличных лишь по гранулометрическому составу, и имеющие индивидуальное название — описание которых началось ещё при картировании Почвенным бюро территории США в начале XX века.

Термины по ГОСТу: [2]

Классификация почв — система разделения почв по происхождению и (или) свойствам.

  • Тип почвы — основная классификационная единица, характеризуемая общностью свойств, обусловленных режимами и процессами почвообразования, и единой системой основных генетических горизонтов.
    • Подтип почвы — классификационная единица в пределах типа, характеризуемая качественными отличиями в системе генетических горизонтов и по проявлению налагающихся процессов, характеризующих переход к другому типу.
      • Род почвы — классификационная единица в пределах подтипа, определяемая особенностями состава почвенно-поглощающего комплекса, характером солевого профиля, основными формами новообразований.
        • Вид почвы — классификационная единица в пределах рода, количественно отличающаяся по степени выраженности почвообразовательных процессов, определяющих тип, подтип и род почв.
          • Разновидность почвы — классификационная единица, учитывающая разделение почв по гранулометрическому составу всего почвенного профиля.
            • Разряд почвы — классификационная единица, группирующая почвы по характеру почвообразующих и подстилающих пород.

Закономерности распространения

Значение почв в природе

Почва как среда обитания живых организмов

Почва обладает плодородием — является наиболее благоприятным субстратом или средой обитания для подавляющего большинства живых существ — микроорганизмов, животных и растений. Показательно также, что по их биомассе почва (суша Земли) почти в 700 раз превосходит океан, хотя на долю суши приходится менее 1/3 земной поверхности.

Геохимические функции

Свойство различных почв по-разному аккумулировать разнообразные химические элементы и соединения, одни из которых необходимы для живых существ (биофильные элементы и микроэлементы, различные физиологически-активные вещества), а другие являются вредными или токсичными (тяжёлые металлы, галогены, токсины и пр.), проявляется на всех живущих на них растениях и животных, включая и человека. В агрономии, ветеринарии и медицине такая взаимосвязь известна в виде так называемых эндемических болезней, причины которых были раскрыты только после работ почвоведов.

Почва оказывает существенное влияние на состав и свойства поверхностных, подземных вод и всю гидросферу Земли. Фильтруясь через почвенные слои вода извлекает из них особый набор химических элементов, характерный для почв водосборных территорий. А поскольку основные хозяйственные показатели воды (её технологическая и гигиеническая ценность) определяются содержанием и соотношением этих элементов, то нарушение почвенного покрова проявляется также в изменении качества воды.

Регуляция состава атмосферы

Почва является главным регулятором состава атмосферы Земли. Обусловлено это деятельностью почвенных микроорганизмов, в огромных масштабах продуцирующих разнообразные газы — азот и его окислы, кислород, диоксид и оксид углерода, метан и другие углеводороды, сероводород, ряд прочих летучих соединений. Большинство из этих газов вызывают «парниковый эффект» и разрушают озоновый слой, вследствие чего изменение свойств почв может привести к изменению климата на Земле. Не случайно происходящий в настоящее время сдвиг в климатическом равновесии нашей планеты специалисты связывают в первую очередь с нарушениями почвенного покрова.

Экономическое значение

Распаханное поле, Вюртемберг

Почву часто называют главным богатством любого государства в мире, поскольку на ней и в ней производится около 90 % продуктов питания человечества. Деградация почв сопровождается неурожаями и голодом, приводит к бедности государств, а гибель почв может вызвать гибель всего человечества. Также земля применялась в древности в качестве строительного материала.

История изучения

Основная статья: Почвоведение

Описанию свойств почв и их классификации человек уделял внимание со времени возникновения земледелия. Тем не менее, появление почвоведения как науки произошло лишь в конце XIX века и связано с именем В. В. Докучаева. В.И.Вернадский также внёс вклад в почвоведение. Он называл почву биокосным образованием, то есть состоящим из живого и неживого вещества.


Примечания

  1. Ивлёв А. М. Эволюция почв. Владивосток, 2005.
  2. 1 2 3 4 5 6 7 8 9 ГОСТ 27593-88(2005). ПОЧВЫ. Термины и определения. УДК 001.4:502.3:631.6.02:004.354
  3. Почвы СССР. Под ред. Г. В. Добровольского. М.: Мысль, 1979, с.129
  4. Б. Г. Розанову, Морфология почв. — М.: изд. МГУ, 1983
  5. Орлов Д. С. Гумусовые кислоты почв. М.: Изд-во МГУ, 1974.
  6. Кононова М. М. Органическое вещество почвы. — М.: 1963.
  7. Александрова Л. Н. Органическое вещество почвы и процессы его трансформации. — Л.: 1980.
  8. По С. А. Захарову. Особая классификация структуры почвы предложена также С. С. Никифоровым (Nikiforoff S. S. Morphological classification of soil structure. «Soil. Sci.», 1941, vol. 52, No. 2.), собственная классификация используется ФАО, Департаментом земледелия США и т. д.
  9. Вески Р. Э. О некоторых путях дальнейшего развития учения о почвах // Почвоведение. 1985. № 3. С. 75-86.
  10. Накаряков А. В. Рекультивация земель после разработки россыпей на Урале и проблемы инициального почвообразования // Доклады V Международной конференции почвоведов. Прага, 1981. Т.1. С.110-111.
  11. Трофимов С. С., Таранов С. А. Особенности почвообразования в техногенных экосистемах // Почвоведение. 1987. № 11. С. 95-99.
  12. Етеревская Л. В., Донченко М. Т., Лехучер Л. В. Систематика и классификация техногенных почв // Растения и промышленная среда. Свердловск: Изд-во Уральского ун-та, 1984. с. 14-21.

Ссылки

Литература

  • Ковда В. А. Основы учения о почвах. — М.: Наука, 1983.
  • Розанов Б. Г. Морфология почв. — М.: изд. МГУ, 1983.
  • Почвоведение. В 2 ч. / Под ред. В. А. Ковды, Б. Г. Розанова — М.: Высш. шк., 1988. ISBN 5-06-001159-3, ISBN 5-06-001195-X
  • Теории и методы физики почв / Под ред. Е. В. Шеина и Л. О. Карпачевского. — М.: «Гриф и К», 2007. ISBN 978-5-8125-0921-7
  • Шишов Л. Л., Лебедева И. И., Тонконогов В. Д. Классификация почв России и перспективы ее развития /Почвоведение: история, социология, методология. Памяти основателя теоретического почвоведения В. В. Докучаева / Отв. ред. В. Н. Кудеяров, И. В. Иванов. — М.: Наука, 2005. — С. 272—279.

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?
Синонимы:

Полезное


Смотреть что такое "Почвообразование" в других словарях:

  • почвообразование — почвообразование …   Орфографический словарь-справочник

  • Почвообразование — почвогенезис, процесс формирования почв в результате взаимодействия организмов и продуктов их жизнедеятельности с горными породами и продуктами их выветривания при определенных климатических условиях. На Земле почвообразование началось около 450… …   Экологический словарь

  • почвообразование — педогенез Словарь русских синонимов. почвообразование сущ., кол во синонимов: 1 • педогенез (1) Словарь синонимов ASIS. В.Н. Тришин …   Словарь синонимов

  • почвообразование — Зарождение, становление и эволюция почвы под влиянием природных и антропогенных процессов. → Рис. 301, с. 669 Syn.: педогенез; генезис почвы …   Словарь по географии

  • почвообразование — dirvodara statusas T sritis ekologija ir aplinkotyra apibrėžtis Dirvožemio susidarymas dirvodarinėje uolienoje, glaudžiai susijęs su litosferos, hidrosferos, atmosferos (biosferos) veiksniais ir ūkine žmogaus veikla. atitikmenys: angl.… …   Ekologijos terminų aiškinamasis žodynas

  • почвообразование — почвообразование, почвообразования, почвообразования, почвообразований, почвообразованию, почвообразованиям, почвообразование, почвообразования, почвообразованием, почвообразованиями, почвообразовании, почвообразованиях (Источник: «Полная… …   Формы слов

  • почвообразование — почвообразов ание, я …   Русский орфографический словарь

  • Почвообразование — см. почвообразовательный процесс …   Толковый словарь по почвоведению

  • почвообразование — (2 с), Пр. о почвообразова/нии …   Орфографический словарь русского языка

  • почвообразование — я; ср. Процесс образования почвы (1 зн.) из материнской породы под воздействием различных факторов. Факторы почвообразования. Зона почвообразования. ◁ Почвообразовательный, ая, ое. П ые процессы …   Энциклопедический словарь


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»