Построения при помощи циркуля и линейки

Построения при помощи циркуля и линейки

Построения с помощью циркуля и линейки — раздел евклидовой геометрии, известный с античных времён.

В задачах на построение возможны следующие операции:

  • Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля провести окружность с центром в построенной точке с радиусом, равным расстоянию между двух уже построенных точек.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

При этом циркуль и линейка считаются идеальными инструментами, в частности

  • Линейка не имеет делений и имеет только одну сторону бесконечной длины.
  • Циркуль может иметь сколь угодно большой раствор.

Содержание

Простой пример

Разбиение отрезка пополам

Задача. С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружность с центром в точке A радиусом AB.
  • Проводим окружность с центром в точке B радиусом AB.
  • Находим точки пересечения P и Q двух построенных окружностей.
  • Линейкой проводим отрезок, соединяющий точки P и Q.
  • Находим точку пересечения AB и PQ. Это — искомая середина отрезка AB.

Правильные многоугольники

Основная статья: Теорема Гаусса — Ванцеля
Построение правильного пятиугольника

Античным геометрам были известны способы построения правильных n-угольников для n=2^k\,\!, 3\cdot 2^k, 5\cdot 2^k и 3\cdot5\cdot2^k.

Гаусс показал в 1796 возможность построения правильных n-угольников при n=2^k\cdot p_1\cdots p_m, где p_i\,\! — различные простые числа Ферма. В 1836 П. Ванцель доказал, что других правильных многоугольников, которые можно построить циркулем и линейкой, не существует.

Известные задачи

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

  • Трисекция угла — разбить произвольный угол на три равные части.
  • Удвоение куба — построить отрезок, являющийся ребром куба в два раза большего объёма, чем куб с данным ребром.
  • Квадратура круга — построить квадрат, равный по площади данному кругу.

Только в XIX веке было доказано, что все три задачи не имеют решения. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

Возможные и невозможные построения

Все построения являются ничем иным, как решениями какого-либо уравнения, причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа — графического решения уравнения определенного типа. В рамках вышеописанных требований, возможны следующие построения:

Иначе говоря, возможно построить лишь числа равные арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,

  • Если задан только отрезок длины 1, то \sqrt[3]{2} невозможно представить в таком виде (отсюда невозможность удвоения куба).
  • Возможность построить правильный 17-угольник следует из выражения на косинус угла:
    \cos{\left(\frac{2\pi}{17}\right)} = -\frac{1}{16} \; + \; \frac{1}{16} \sqrt{17} \;+\; \frac{1}{16} \sqrt{34 - 2 \sqrt{17}} \;+\; \frac{1}{8} \sqrt{ 17 + 3 \sqrt{17} - \sqrt{34 - 2 \sqrt{17}} - 2 \sqrt{34 + 2 \sqrt{17}} }

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора — Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Легко заметить, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности, невозможно даже разбить отрезок на две равные части, либо найти центр нарисованной окружности. Но при наличии на плоскости заранее проведённой окружности с отмеченным центром с помощью линейки можно провести те же построения, что и циркулем и линейкой (теорема Понселе — Штейнера (англ.)), 1833.
  • Построения с помощью плоского оригами. см. правила Худзита

Забавные факты

  • Узор на флаге Ирана описывается как построение с помощью циркуля и линейки, (см. [1] на персидском).

См.также

  • Kig,

Литература


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Построения при помощи циркуля и линейки" в других словарях:

  • ГЕОМЕТРИЧЕСКИЕ ПОСТРОЕНИЯ — решение нек рых геометрич. задач при помощи различных инструментов (линейки, циркуля и др.), к рые предполагаются абсолютно точными. В зависимости от выбора инструментов определяется цикл задач, к рые могут быть разрешены этими средствами.… …   Математическая энциклопедия

  • Геометрические построения —         решение некоторых геометрических задач при помощи вспомогательных инструментов (линейка, циркуль и т.п.), которые предполагаются абсолютно точными. В исследованиях по Г. п. выясняется круг задач, разрешимых с помощью заданного набора… …   Большая советская энциклопедия

  • КВАДРАТУРА — КВАДРАТУРА, ы, жен. В математике: вычисление площади или поверхности фигуры. • Квадратура круга неразрешимая задача построения при помощи циркуля и линейки квадрата, равного по площади данному кругу; вообще неразрешимая задача. Толковый словарь… …   Толковый словарь Ожегова

  • Геометрия — (γήμετρώ земля, μετρώ мерю). Понятия о пространстве, положении и форме принадлежат к числу первоначальных, с которыми человек был знаком уже в глубокой древности. Первые шаги в Г. были сделаны египтянами и халдеями. В Греции Г. была введена… …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • Интегральное исчисление — Эта статья или раздел нуждается в переработке. Пожалуйста, улучшите статью в соответствии с правилами написания статей. Интегрально …   Википедия

  • Невсис — Построение с помощью невсиса Невсис (от греч. νεῦσις) метод геометрического построения, цель которого вписать отрезок заданной длины между двумя кривыми линиями таким образом, чтобы этот отрезок или его продолжение проходил через заданную точку.… …   Википедия

  • Математика —          I. Определение предмета математики, связь с другими науками и техникой.          Математика (греч. mathematike, от máthema знание, наука), наука о количественных отношениях и пространственных формах действительного мира.          «Чистая …   Большая советская энциклопедия

  • Гаусс — I Гаусс (Gauss)         Карл Фридрих (30.4.1777, Брауншвейг, 23.2.1855, Гёттинген), немецкий математик, внёсший фундаментальный вклад также в астрономию и геодезию. Родился в семье водопроводчика. С 1795 по 1798 учился в Гёттингенском… …   Большая советская энциклопедия

  • Гаусс Карл Фридрих — Гаусс (Gauss) Карл Фридрих (30.4.1777, Брауншвейг, 23.2.1855, Гёттинген), немецкий математик, внёсший фундаментальный вклад также в астрономию и геодезию. Родился в семье водопроводчика. С 1795 по 1798 учился в Гёттингенском университете. В 1799… …   Большая советская энциклопедия

  • Лекало — Лекала …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»