Полюс наблюдателя

Полюс наблюдателя

Система

\dot q(t)=F(t)q(t)+G(t)y(t)+H(t)u(t) (1)
z(t)=K(t)q(t)+L(t)y(t)+M(t)u(t)\! (2)

является наблюдателем для системы

\dot x(t)=A(t)x(t)+B(t)u(t) (3),
y(t)=C(t)x(t)\! (4),

если для каждого начального состояния x(t_0)\! системы (3)-(4) существует начальное состояние q_0\! для системы (1)-(2), такое, что равенство q(t_0)=q_0\! приводит к z(t)=x(t), t \ge t_0 при всех управлениях u(t), t \ge t_0.

Здесь A(t), B(t), C(t), F(t), G(t), H(t), K(t), L(t), M(t)\! — матрицы соответствующей размерности.

Если размерность q(t)\! равна размерности x(t)\! и выполнение условия q(t_0)=x(t_0)\! дает q(t)=x(t), t \ge t_0 при всех управлениях u(t), t \ge t_0, то система (1) называется наблюдателем полного порядка для системы (3)-(4).

Набор дифференциальных уравнений (3) описывает изменение во времени состояния некоторой системы. n\!-мерный вектор x(t)\!, называемый вектором состояния, описывает состояние этой системы в момент времени t\!. r\!-мерный вектор u(t)\! описывает управляющие воздействия на систему и называется вектором управления или просто управлением.

l\!-мерный вектор y(t)\! представляет собой линейную комбинацию переменных состояния системы (3), которую мы можем измерить. Обычно l<n\!. y(t)\! называют наблюдаемой переменной.

Теорема 1. Система (1) является наблюдателем полного порядка для системы (3)-(4) тогда и только тогда, когда F(t)=A(t)-K(t)C(t)\!, G(t)=K(t)\!, H(t)=B(t)\!, где K(t)\! является произвольной переменной во времени матрицей соответствующей размерности. В результате наблюдатели полного порядка имеют следующую структуру:

\dot q(t)=A(t)q(t)+B(t)u(t)+K(t)[y(t)-C(t)q(t)] (5).

Матрица K(t)\! называется матрицей коэффициентов усиления наблюдателя. Наблюдатель полного порядка можно также представить в виде \dot q(t)=[A(t)-K(t)C(t)]q(t)+B(t)u(t)+K(t)y(t)], откуда следует, что устойчивость наблюдателя определяется поведением матрицы A(t)-K(t)C(t)\!.

В случае системы с постоянными параметрами, когда все матрицы в постановке задачи являются постоянными, включая матрицу коэффициентов усиления K\!, устойчивость наблюдателя следует из расположения характеристических чисел матрицы A-KC\!, называемых полюсами наблюдателя. Наблюдатель будет устойчив, если все его полюса расположены в левой половине комплексной плоскости.

Теорема 2. Рассмотрим наблюдатель полного порядка (5) для системы (3)-(4). Ошибка восстановления

e(t)=x(t)-q(t)\!

удовлетворяет дифференциальному уравнению

\dot e(t)=\left[A(t)-K(t)C(t)\right]e(t).

Ошибка восстановления обладает тем свойством, что

e(t) \to 0 при t \to 0

для всех e(t_0)\! тогда и только тогда, когда наблюдатель является асимптотически устойчивым.

Чем дальше в левой половине комплексной полуплоскости удалены полюса наблюдателя, тем быстрее сходится ошибка восстановления к нулю. Это достигается увеличением матрицы коэффициентов усиления K\!, однако это повышает чувствительность наблюдателя к шумам измерений, которые, возможно, присутствуют в наблюдаемой переменной y(t)\!.

Примечания

См. также

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Полезное


Смотреть что такое "Полюс наблюдателя" в других словарях:

  • ПОЛЮС МИРА — земная ось, продолженная до пересечения со сферой небесной, образует на ней две точки, называемые полюсами мира. Высота П. М. равна широте места наблюдателя. П. М., расположенный в надгоризонтной части сферы, называется повышенным, другой же П. М …   Морской словарь

  • Полюс мира — Не следует путать с Полюсом Мира  общественно политическим интернет ресурсом. Полюс мира  точка на небесной сфере, вокруг которой происходит видимое суточное движение звезд из за вращения Земли вокруг своей оси.[1] Северный полюс мира… …   Википедия

  • Северный галактический полюс — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • Северный полюс мира — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • Северный полюс эклиптики — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • Южный галактический полюс — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • Южный полюс эклиптики — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • Южный полюс мира — Небесная сфера разделена небесным экватором. Небесная сфера воображаемая вспомогательная сфера произвольного радиуса, на которую проецируются небесные светила: служит для решения различных астрометрических задач. За центр небесной сферы, как… …   Википедия

  • ШИРОТА МЕСТА НАБЛЮДАТЕЛЯ — на небесной сфере дуга небесного меридиана от экватора до места зенита. Повышенный полюс небесной сферы всегда одного наименования с географической широтой наблюдателя, а высота повышенного полюса равна географической Ш. М. Н. Самойлов К. И.… …   Морской словарь

  • НЕБЕСНАЯ СФЕРА — Когда мы наблюдаем небо, все астрономические объекты кажутся расположенными на куполообразной поверхности, в центре которой находится наблюдатель. Этот воображаемый купол образует верхнюю половину воображаемой сферы, которую называют небесной… …   Энциклопедия Кольера


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»