- ПЗС-сенсор
-
ПЗС-ма́трица (сокр. от «прибор с зарядовой связью») или CCD-ма́трица (сокр. от англ. CCD, «Charge-Coupled Device») — специализированная аналоговая интегральная микросхема, состоящая из светочувствительных фотодиодов, выполненная на основе кремния, использующая технологию ПЗС — приборов с зарядовой связью.
ПЗС-матрицы выпускаются и активно используются компаниями Canon, Fuji, Kodak, Matsushita,
Содержание
История ПЗС-матрицы
Прибор с зарядовой связью был изобретен в 1969 году Уиллардом Бойлом (Willard Boyle) и Джорджем Смитом (George E. Smith) в Лабораториях Белла (AT&T Bell Labs). Лаборатории работали над видеотелефонией (англ. picture phone) и развитием «полупроводниковой пузырьковой памяти» (англ. semiconductor bubble memory). Приборы с зарядовой связью начали свою жизнь как устройства памяти, в которых можно было только поместить заряд во входной регистр устройства. Однако способность элемента памяти устройства получить заряд благодаря фотоэлектрическому эффекту сделала данное применение ПЗС устройств основным.
В 1970 году исследователи Bell Labs научились фиксировать изображения с помощью простых линейных устройств.
Впоследствии под руководством Кацуо Ивама (Kazuo Iwama) компания
Ивама умер в августе 1982 года. Микросхема ПЗС была установлена на его надгробной плите для увековечения его вклада.
В январе 2006 года за работы над ПЗС У.Бойл и Дж. Смит были удостоены награды Национальной Инженерной Академии США (англ. National Academy of Engineering).[1]
Общее устройство и принцип работы
ПЗС-матрица состоит из поликремния, отделённого от кремниевой подложки, у которой при подаче напряжения через поликремневые затворы изменяются электрические потенциалы вблизи электродов.
До экспонирования обычно подачей определённой комбинации напряжений на электроды происходит сброс всех ранее образовавшихся зарядов и приведение всех элементов в идентичное состояние.
Далее комбинация напряжений на электродах создаёт потенциальную яму, в которой могут накапливаться электроны, образовавшиеся в данном пикселе матрицы в результате воздействия света при экспонировании. Чем интенсивнее световой поток во время экспозиции, тем больше накапливается электронов в потенциальной яме, соответственно тем выше итоговый заряд данного пикселя.
После экспонирования последовательные изменения напряжения на электродах формируют в каждом пикселе и рядом с ним распределение потенциалов, которое приводит к перетеканию заряда в заданном направлении, к выходным элементам матрицы.
Пример субпикселя ПЗС-матрицы с карманом n-типа
Архитектура пикселей у производителей разная.
Обозначения на схеме субпикселя ПЗС:
- 1 — Фотоны света, прошедшие через объектив фотоаппарата;
- 2 — Микролинза субпикселя;
- 3 — R — красный светофильтр субпикселя, фрагмент фильтра Байера;
- 4 — Прозрачный электрод из поликристаллического кремния или оксида олова;
- 5 — Изолятор (оксид кремния);
- 6 — Кремниевый канал n-типа. Зона генерации носителей (зона внутреннего фотоэффекта);
- 7 — Зона потенциальной ямы (карман n-типа), где собираются электроны из зоны генерации носителей;
- 8 — Кремниевая подложка p-типа;
Классификация по способу буферизации
Матрицы с полнокадровым переносом
Матрицы с буферизацией кадра
Матрицы с буферизацией столбцов
Классификация по типу развёртки
Матрицы для видеокамер
- Матрицы с прогрессивной развёрткой
- Матрицы с чересстрочной развёрткой
Размеры фотографических матриц
Некоторые специальные виды матриц
Светочувствительные линейки
Основная сфера применения линейных световоспринимающих устройств — сканеры, панорамная фотоаппаратура, а также спектроанализаторы и другое научно-исследовательское оборудование.
Координатные и угловые датчики
Матрицы с обратной засветкой
В классической схеме ПЗС-элемента, при которой используются электроды из поликристаллического кремния, светочувствительность ограничена по причине частичного рассеивания света поверхностью электрода. Поэтому при съёмке в особых условиях, требующих повышенной светочувствительности в синей и ультрафиолетовой областях спектра, применяются матрицы с обратной засветкой (англ. back-illuminated matrix). В сенсорах такого типа регистрируемый свет падает на подложку, но для требуемого внутреннего фотоэффекта подложка шлифуется до толщины 10-15 мкм. Данная стадия обработки существенно увеличивала стоимость матрицы, устройства получались весьма хрупкими и требовали повышенной осторожности при сборке и эксплуатации. А при использовании светофильтров, ослабляющих световой поток, все дорогостоящие операции по увеличению чувствительности теряют смысл. Поэтому матрицы с обратной засветкой применяются в основном в астрономической фотографии.
Светочувствительность
Светочувствительность матрицы складывается из светочувствительности всех её фотодатчиков (пикселей) и в целом зависит от:
- интегральной светочувствительности, представляющей собой отношение величины фотоэффекта к световому потоку (в люменах) от источника излучения нормированного спектрального состава;
- монохроматической светочувствительности' — отношения величины фотоэффекта к величине световой энергии излучения (в миллиэлектронвольтах), соответствующей определённой длине волны;
- набор всех значений монохроматической светочувствительности для выбранной части спектра света составляет спектральную светочувствительность — зависимость светочувствительности от длины волны света;
См. также
Примечания
Внешние ссылки
Wikimedia Foundation. 2010.