Металло-галоидная лампа

Металло-галоидная лампа

Металлогалоге́новые ла́мпы относятся к газоразрядным лампам и обеспечивают высокую для своих размеров светоотдачу. Металлогалогеновые лампы являются компактными, мощными и эффективными источниками света. Изобретенные в конце 60-х годов ХХ века для промышленного использования, сегодня металлогалогеновые лампы имеют множество типоразмеров и конфигураций, предназначенных для коммерческого и домашнего использования. Как и большинство других газоразрядных ламп, данный тип ламп работает при условиях высокого давления и температуры заключенных в них паров и требует для безопасной работы специальных устройств. Они также могут считаться «точечными» источниками света, по причине чего при их использовании могут применяться рефлекторные светильники, концентрирующие световой поток.

Содержание

Применение

Металлогалогеновые лампы используются как для обычного промышленного освещения, так и в очень специфических областях, где требуется применение ультрафиолетового излучения или света голубого диапазона спектра. Часто данный тип ламп используется для внутреннего освещения теплиц, цветников и т. д., так как лампы обеспечивают спектр и цветовую температуру свечения, благоприятствующие росту растений. Довольно часто эти лампы используются для освещения спортивных сооружений и соревнований. Металлогалогеновые лампы в достаточной степени популярны у аквариумистов, занимающихся выращиванием коралловых рифов, нуждающихся для своего роста в источнике света большой яркости. Широкое распространение данные лампы получили при использовании новейших профессиональных световых установок, таких как интеллектуальные светильники. При использовании в данных системах металлогалогеновые лампы известны под аббревиатурой MSD-лампы, и в большинстве случаев их мощность составляет 150, 250, 400 и 1200 Вт.

Функционирование

Как и другие газоразрядные лампы, такие как очень похожие на них ртутные лампы, металлогалогеновые лампы излучают свет, получаемый при прохождении электрической дуги через смесь газов. В металлогалогеновой лампе компактная колба для дуги содержит находящуюся под высоким давлением смесь аргона, ртути и большого количества солей-галогенидов (галоидов) различных металлов. Состав соляной смеси непосредственно влияет на спектр излучаемого света, включая цветовую температуру свечения и степень цветопередачи (добавляя свету голубой или красный оттенок). Инертный газ аргон легко ионизируется, что облегчает задачу создания электрической дуги, протекающей между двух электродов, при первой подаче напряжения на лампу. Затем тепло, созданное зажёгшейся аргоновой дугой, превращает в пар ртуть и галоидные соли, которые начинают излучать свет при возрастании температуры и давления. Обычные условия нормальной работы, создающиеся внутри колбы при горении электрической дуги, следующие:

давление — 4,8 — 6,2 кг/см²,
температура — 1090 °C.

Как и все другие газоразрядные лампы, металлогалогеновые лампы требуют применения вспомогательного оборудования для обеспечения необходимого напряжения зажигания и рабочего напряжения, а также для регулировки значения тока, протекающего через лампу.

Около 24 % энергии, производимой металлогалогеновой лампой, расходуется на излучение света (65-115 лм/Вт), что делает её по этому параметру более эффективной, чем люминесцентные лампы, и значительно более эффективной, чем лампы накаливания.


Устройство

Металогалогеновые лампы имеют две базовые конфигурации: лампы с внутренней оболочкой и без нее. Обычно лампы, имеющие внутренние оболочку, имеют односторонний винтовой цоколь, вкручивающийся в патрон светильника, в то время как лампы без внутренней оболочки имеют двусторонний цоколь, который необходимо вставлять в патрон.

Металлогалогеновая лампа с внутренней оболочкой включает в себя следующие основные компоненты. Она имеет металлический цоколь, обеспечивающий электрическое соединение. Наружная стеклянная оболочка (или стеклянная колба), изготовленная из боросиликатного стекла, необходима для защиты внутренних компонентов лампы, а также для поглощения ультрафиолетового излучения, создаваемого содержащимися во внутренней колбе парами ртути. Боросиликатное стекло обеспечивает благоприятный для внутренней колбы температурный режим. Наружная оболочка заполняется инертной средой, предотвращающей окисление компонентов внутренней колбы.

Внутри наружной оболочки крепления и стальные проводники держат внутреннюю колбу электрической дуги, изготовленную из плавленого кварца, с введенными туда вольфрамовыми электродами. Именно внутри этой колбы и создается световое излучение. Кроме паров ртути, лампа содержит иодиды, а иногда бромиды различных металлов, таких как натрий, таллий, индий, скандий и диспрозий, а также инертный газ. Состав используемых металлов непосредственно влияет на цветовой спектр лампы.

Многие металлогалогеновые лампы вместо кварцевой внутренней колбы, используемой и в ртутных лампах, имеют керамическую внутреннюю колбу, похожую на колбу натриевых ламп высокого давления. Их называют металлогалогеновыми лампами с керамической горелкой. Металлокерамические лампы могут выдерживать большие по сравнению с кварцевыми температуры, создаваемые внутри колбы электрической дуги, а также по общему мнению лучше сохраняют цветовую температуру излучаемого света в течение всего своего срока службы.

Некоторые лампы имеют люминофорное покрытие на внутренней стороне наружной стеклянной колбы, что улучшает характеристики излучаемого ими спектра, а также служит для рассеивания света.

Пуско-регулирующая аппаратура (ПРА)

Условия, при которых зажигаются металлогалогеновые лампы, очень важны, поскольку они напрямую влияют на тип балласта, используемого с конкретным типом лампы

Металлогалогеновые лампы требуют балластного сопротивления для регулирования величины тока, протекающего через дугу, и подачи корректного напряжения на электроды, создающие дугу. Стандарты ANSI (American National Standards Institute) для систем «балласт-лампа» содержат значения всех параметров для всех компонентов металлогалогеновых ламп (за исключением некоторых новейших продуктов).

В настоящее время с металлогалогеновыми лампами может использоваться лишь небольшое число электронных ПРА. Преимуществом этих балластов является возможность более точной регулировки подаваемого на лампы напряжения, что обеспечивает более устойчивый спектр и увеличивает срок службы лампы. В некоторых случаях утверждается, что электронные балласты увеличивают КПД ламп (напр. снижают потребление электроэнергии). Однако, за несколькими исключениями, работа на высоких частотах напряжения не увеличивает эффективность этих ламп, также как и в случае с высокомощными и сверхвысокомощными люминесцентными лампами.

Цветовая температура горения

Первоначально металлогалогеновые лампы использовались вместо ртутных ламп в тех местах, где необходимо было создать свет, по своим характеристикам приближающийся к естественному, по причине того, что данные лампы излучают белый свет (ртутные лампы излучают свет с большой примесью синего цвета). Однако в настоящее время различие между спектрами данных типов ламп не столь значительно. Некоторые металлогалогеновые лампы могут излучать очень чистый белый свет, имеющий индекс цветопередачи в районе 80.

С созданием специальных смесей галоидных солей, металлогалогеновые лампы способны излучать свет с относительной температурой горения в диапазоне от 3000 К (жёлтый свет) до 20 000 К (синий свет). Некоторые виды специальных ламп были созданы для излучения спектра, необходимого для растений (используются в теплицах, парниках и т. д) или животных (используются в освещении аквариумов). Однако следует учитывать то обстоятельство, что вследствие присутствия допусков и стандартных отклонений при фабричном производстве ламп, цветовые характеристики ламп не могут быть указаны со 100 % точностью. Более того, по стандартам ANSI цветовые характеристики металлогалогеновых ламп измеряются после 100 часов их горения (т. н. выдержка). Поэтому цветовые характеристики данных ламп не будут соответствовать заявленным в спецификации до тех пор, пока лампа не будет подвергнута данной выдержке.

Наиболее сильные расхождения с заявленными спецификационными данными имеют лампы с технологией пуска «предварительный прогрев» (±300 К). Выпущенные по новейшей технологии «импульсного старта» лампы улучшили соответствие заявленным характеристикам, вследствие чего расхождение составляет от 100 до 200 К. На цветовую температуру горения ламп могут влиять также электрические характеристики питающей сети, а также вследствие отклонений в самих лампах. В том случае, если подaваемое на лампу питание имеет недостаточную мощность, она будет иметь меньшую физическую температуру и её свет будет «холодным» (с большей примесью синего цвета, что будет делать их очень сходными с ртутными лампами). Данное явление происходит по причине того, что дуга с недостаточно высокой температурой не сможет полностью испарить и ионизировать галоидные соли, которые и придают свету лампы тёплый оттенок (жёлтые и красные цвета), из-за чего в спектре лампы будет доминировать спектр легче ионизирующейся ртути. Это же явление наблюдается также во время прогрева лампы, когда колба дуги еще не достигла рабочей температуры и галоидные соли ионизировались не полностью.

Для ламп, запитанных от чрезмерно высокого напряжения, верна обратная картина, но такая ситуация является более опасной, вследствие возможности взрыва внутренней колбы из-за её перегрева и возникновения в ней избыточного давления. Кроме того, при использовании металлогалогеновых ламп их цветовые характеристики часто меняются с течением времени. В больших осветительных установках с использованием металлогалогеновых ламп часто все лампы существенно различаются по цветовым характеристикам.

Пуск и прогрев

Для пуска металлогалогеновой лампы используются два метода: «метод пуска с использованием предварительного прогрева» (стандартный) и «импульсный метод пуска».

Металлогалогеновые лампы с пуском методом предварительного прогрева содержат специальный «пусковой» электрод внутри колбы лампы для создания электрической дуги при первом ее зажигании (что сопровождается небольшой вспышкой при первом включении). На данный электрод балластом подаётся ток высокого напряжения, что влечёт за собой возникновение электрической дуги между ним и рабочим электродом, находящимся на этой же стороне внутренней колбы. Как только параметры излучаемого света достигают своих нормальных значений, биметаллический выключатель отсекает подачу тока на стартовый электрод, что прерывает стартовую дугу.

Металлогалогеновые лампы с импульсным зажиганием не требуют пускового электрода, и вместо него используют специальное пусковое устройство, называемое зажигающим модулем (игнитором), создающее импульс высокого напряжения (обычно от 3 до 5 кВ), подаваемый непосредственно на рабочие электроды. Отсутствие пускового электрода и биметаллического переключателя сокращает площадь пайки на конце колбы дуги, что позволяет увеличить давление находящейся в ней смеси паров, а также уменьшить потери тепла. Однако использование для пуска лампы зажигающего электрода отрицательно сказывается на напыленном вольфрамовом покрытии электродов, так как при импульсном пуске они нагреваются быстрее, сокращая, таким образом, время прогрева лампы.

Металлогалогеновая лампа в холодном состоянии не может немедленно начать работать с полной световой отдачей по причине того, что температура и давление паров во внутренней камере достигают рабочего уровня по прошествии некоторого времени. Создание первичной аргоновой дуги иногда требует нескольких секунд, а период прогрева может длиться до 5 мин (в зависимости от типа лампы). В течение этого времени излучаемый лампой спектр не будет однородным по своему цветовому составу до тех пор, пока все галоидные соли металлов не перейдут в парообразное состояние.

При сбое в подаче напряжения, даже коротком, дуга в лампе гаснет, а высокое давление паров, образующееся в горячей внутренней колбе, препятствует повторному зажиганию дуги; перед повторным зажиганием лампы ее необходимо охлаждать в течение примерно 5-10 минут. В некоторых осветительных системах, где длительный перерыв освещения может вызвать остановку производства или влиять на безопасность, данное обстоятельство является основным поводом для беспокойства. Небольшое количество металлогалогеновых ламп изготовлены с возможностью «немедленного зажигания» дуги, и имеют балласты и цоколи, сконструированные с расчетом выдерживать 30-кВ импульс повторного зажигания дуги, подаваемый отдельной анодной шиной.

Типы и их обозначения

Обычные металлогалогеновые лампы, как правило, имеют номинальную мощность в 70, 100, 150, 175, 250, 400 и 1000 Вт.

Как уже говорилось выше, металлогалогеновые лампы могут иметь односторонний либо двусторонний цоколь. Производители, как правило, указывают это в своих каталогах при помощи условных обозначений. Односторонний цоколь обозначается аббревиатурой SE (single-ended), а двусторонний, соответственно, аббревиатурой DE (double-ended). Лампы с односторонним цоколем, как правило, вкручиваются в патрон при помощи имеющейся на цоколе резьбы (имеют так называемый цоколь Эдисона). Лампы с двусторонним цоколем необходимо вставлять в патроны, расположенные по обе стороны используемого светильника.

Металлогалогеновые лампы чувствительны к тому положению, в котором они установлены, по причине изменения формы дуги во внутренней колбе. Лампы рассчитаны только на работу в определенной ориентации. Однако лампы, помеченные маркировкой «universal», могут работать в любом положении, хотя при работе их не в вертикальном положении продолжительность срока службы и интенсивность излучаемого света будут снижаться. Для получения наилучших характеристик при эксплуатации лампы в том случае, если её ориентация известна заранее, необходимо выбирать не универсальную, а соответствующую данной позиции лампу.

Для обозначения рекомендованной ориентации лампы, в которой она должна работать, используются различные коды (напр., U = universal (универсальная), BH = base horizontal (горизонтальная), BUD = Base up/down (вертикальная) и т. д.). При использовании ламп в горизонтальной позиции лучше всего направлять отпаечный носик внутренней колбы (т. н. ниппель) вверх.

Металл-галогеноидная лампа Osram

Для того, чтобы создать общеупотребительную систему обозначения различных типов ламп и позволить находить аналоги среди продукции разных производителей, ANSI разработал свою систему обозначения ламп. В этой системе обозначение металлогалогеновых ламп начинается с буквы «M», за которой следует цифровая кодировка, обозначающая электрические характеристики лампы, а также соответствующий ей тип балласта (для обозначения ртутных разрядных ламп используется литера «H», а для обозначения натриевых ламп — литера «S»). После цифровой кодировки следуют две буквы, обозначающие размер лампы, ее форму, а также тип покрытия и т. д., за исключением цвета. После данного обозначения производитель может по своему выбору добавить какие-либо цифровые или буквенные коды для отображения информации, не отображаемой системой обозначений ANSI, такой как мощность лампы и ее цвет. Для выбора балласта важна только литера «M» и следующее за ним цифровая кодировка. Например, кодировка M59-PJ-400 в системе ANSI обозначает лампу, работающую только с балластами типа М59. Ламп европейских производителей выпускаются с использованием европейских стандартов, которые в некоторых случаях незначительно отличаются от стандартов ANSI.

Другим обозначением, часто встречающимся при выборе металлогалогеновых ламп, является аббревиатура HQI. Данная аббревиатура является торговой маркой фирмы

Цоколи ламп

Наболее употребительным цоколем металлогалогеновых ламп является односторонний винтовой цоколь, вкручивающийся в патрон светильника. Размеры цоколя и резьбы также обозначаются кодом, хотя наиболее часто для их обозначения используются специфические наименования. Например, цоколь Е39 общеупотребительно называют «могулом» (mogul base). Европейские лампы также имеют цоколь типа «могул», но по размерам он немного отличается от цоколя Е39 и называется Е40. Отличия этих цоколей совсем незначительны, поэтому лампы с цоколем Е40 вполне устойчиво работают с патронами под цоколь Е39, используемый в США. В 70 и 150-Вт лампах с двусторонним цоколем используется цоколь RSC (RX7s), а в 250-Вт лампах — цоколь Fc2.

Для подачи напряжения на лампы с винтовым цоколем используют два провода. Один из них припаян или приварен к центровому контакту лампы, а другой припаян или приварен к верхней кромке стакана цоколя.

Лампы с керамическими цоколями имеют внутренние провода, приваренные либо к внутренним серебряным контактам, либо к наружным подводящим проводам.

Колбы

Обозначение колб состоит из буквы/букв, указывающих на их форму, и цифрового кода, обозначающего в восьмых частях дюйма максимально возможный диаметр колбы. Например, маркировка E17 обозначает, что лампа имеет эллипсоидальную форму с максимальным диаметром 17/8 или 21/8 дюйма.

Буквенные обозначения колб: BT (Bulbous Tubular) — бульбовидно-трубчатая, E или ED (Ellipsoidal) — эллипсоидальная, ET (Ellipsoidal Tubular) — эллипсоидно-трубчатая, PAR (Parabolic) — параболическая, R (Reflector) — рефлекторная, T (Tubular) — трубчатая.

Выход из строя

Конец срока службы металлогалогеновых ламп сопровождается эффектом, называемом цикличностью. Эти лампы могут зажигаться от относительно низкого напряжения, но как только они нагреваются в процессе работы, внутренне давление в колбе дуги возрастает и для поддержания дугового разряда требуется все большее и большее напряжение. При старении лампы значение напряжения, необходимое для поддержания горения лампы, постепенно возрастает до значений, превышающих величину напряжения, выдаваемого ПРА. При наступлении этого момента дуга исчезает и лампа перестает светить. Постепенно с угасанием дуги лампа снова охлаждается, а давление паров в колбе дуги понижается, после чего балласт снова имеет возможность зажечь дугу. Данный эффект заключается в том, что периодически лампа горит в течение некоторого времени, после чего гаснет.

Усовершенствованные балласты определяют эффект цикличности и прекращают попытки зажечь лампу по прошествии нескольких циклов. При сбое в подаче напряжения и повторной его подаче, балласт будет осуществлять новую серию попыток зажигания.

Хотя производитель может заявлять, что лампа рассчитана на несколько тысяч часов работы, излучаемый металлогалогеновой лампой световой поток в течение одного года может снизиться на 30 %. В колбе электрической дуги происходят некоторые явления, которые в значительной степени влияют на величину светового потока, выдаваемого лампой: оседание частиц электрода на стенке внутренней колбы, во время горения изменяется химический состав электрической дуги, плавленый кварц кристаллизируется и становится неспособен пропускать свет и т. д. При каждом зажигании металлогалогеновой лампы происходит испарение вольфрамового покрытия электродов лампы, которое оседая на стенках внутренней колбы приводит к ее потемнению. На рисунке показаны новая лампа (слева) и лампа после 1 года использования (справа).

Потемнение стенок внутренней колбы вызывает изменения в спектре излучаемого лампой света, понижая цветовую температуру горения, выражаемую в кельвинах. Часто можно услышать об «изменении спектра», что является результатом снижения светового излучения на разных длинах волн. Менее явно это снижение проявляется на коротких длинах волн, то есть ближе к синему концу спектра.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»