Идеальный газ


Идеальный газ
Термодинамика
Thermodynamics navigation image.svg
Статья является частью одноименной серии.
Начала термодинамики
Уравнение состояния
Термодинамические величины
Термодинамические потенциалы
Термодинамические циклы
Фазовые переходы
править
См. также «Физический портал»

Идеальный газматематическая модель газа, в которой предполагается, что потенциальной энергией взаимодействия молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

Модель широко применяется для решения задач термодинамики газов и задач аэрогазодинамики. Например, воздух при атмосферном давлении и комнатной температуре с большой точностью описывается данной моделью. В случае экстремальных температур или давлений требуется применение более точной модели, например модели газа Ван-дер-Ваальса, в котором учитывается притяжение между молекулами.

Различают классический идеальный газ (его свойства выводятся из законов классической механики и описываются статистикой Больцмана) и квантовый идеальный газ (свойства определяются законами квантовой механики, описываются статистиками Ферми — Дирака или Бозе — Эйнштейна).

Содержание

История

Клапейрон первым сформулировал уравнение идеального газа

Существование атмосферного давления было показано рядом экспериментов в XVII веке. Одним из первых доказательств гипотезы стали магдебургские полушария, сконструированные немецким инженером Герике. Из сферы, образованной полушариями, выкачивался воздух, после чего их было трудно разъединить в силу внешнего давления воздуха. Другой эксперимент в рамках исследования природы атмосферного давления поставил Роберт Бойль. Он состоял в том, что если запаять изогнутую стеклянную трубку с короткого конца, а в длинное колено постоянно подливать ртуть, она не поднимется до верха короткого колена, поскольку воздух в трубке, сжимаясь, будет уравновешивать давление ртути на него. К 1662 году данные опыты позволили прийти к формулировке закона Бойля — Мариотта[1].

В 1802 году Гей-Люссаком был впервые опубликован в открытой печати закон объёмов (называемый в русскоязычной литературе законом Гей-Люссака) [2], однако сам Гей-Люссак считал, что открытие было сделано Жаком Шарлем в неопубликованной работе, относящейся к 1787 году. Независимо от них закон был открыт в 1801 году английским физиком Джоном Дальтоном. Кроме того, качественно закон был описан французом Гийомом Амонтоном в конце XVII века. Впоследствии он уточнил свои эксперименты и установил, что при изменении температуры от 0 до 100 °C объём воздуха линейно увеличивается на 0,375. Проведя аналогичные опыты с другими газами, Гей-Люссак установил, что это число одинаково для всех газов, несмотря на общепринятое мнение, что разные газы расширяются при нагревании различным образом.

В 1834 году из комбинации этих законов Клапейрон смог составить уравнение идеального газа[3]. Тот же закон, уже с использованием молекулярно-кинетической теории был сформулирован Августом Крёнигом в 1856 году[4] и Рудольфом Клаузиусом в 1857 году[5].

Классический идеальный газ

Объём идеального газа линейно зависит от температуры при постоянном давлении

Свойства идеального газа на основе молекулярно-кинетических представлений определяются исходя из физической модели идеального газа, в которой приняты следующие допущения:

  • Диаметр молекулы \,d пренебрежимо мал по сравнению со средним расстоянием между ними (nd^3 \to 0) [6][7].
  • Импульс передается только при соударениях, то есть, силы притяжения между молекулами не учитываются, а силы отталкивания возникают только при соударениях.
  • Суммарная энергия частиц газа постоянна если нет передачи тепла или совершения газом работы.

В этом случае частицы газа движутся независимо друг от друга, давление газа на стенку равно сумме импульсов в единицу времени, переданной при столкновении частиц со стенкой, энергия — сумме энергий частиц газа.

По эквивалентной формулировке идеальный газ - такой газ, который одновременно подчиняется закону Бойля — Мариотта и Гей-Люссака[7], то есть:

\,pV = bT,

где \,p — давление, \,T — абсолютная температура. Свойства идеального газа описываются уравнением Менделеева — Клапейрона

\,pV = \frac{m}{M}RT,

где R - универсальная газовая постоянная, \,m — масса, \,M — молярная масса.

или

\,p = nkT,

где \,n — концентрация частиц, \,k — постоянная Больцмана.

Для любого идеального газа справедливо соотношение Майера:

\,C_p-C_v=R,

где \,Rуниверсальная газовая постоянная, \,C_p — молярная теплоемкость при постоянном давлении, \,C_v — молярная теплоемкость при постоянном объёме.

Применение теории идеального газа

Физический смысл температуры газа

Так как давление молекул газа на стенку определяется по формуле \,p = 2/3ne_{lin}, , где \ e_{lin} - средняя кинетическая энергия поступательного движения молекул газа. Подставив это в уравнение Менделеева — Клапейрона получаем, что температура пропорциональна \ e_{lin}.

Распределение Больцмана

Распределение скоростей для 106 молекул кислорода при -100, 20, 600 градусах Цельсия

Равновесное распределение частиц классического идеального газа по состояниям следует из уравнения Менделеева — Клапейрона, из которого можно вывести распределение газа в поле потенциальной энергии. Это распределение приводит к распределению Больцмана:

\bar n_j  = ae^{ - {{\varepsilon _j } \over {kT}}},

где \bar n_j — среднее число частиц, находящихся в \,j-ом состоянии с энергией \varepsilon _j, а константа \,a определяется условием нормировки:

\sum{n_j}=N,

где \,N — полное число частиц.

Распределение Больцмана является предельным случаем (квантовые эффекты пренебрежимо малы) распределений Ферми — Дирака и Бозе — Эйнштейна, и, соответственно, классический идеальный газ является предельным случаем Ферми-газа и Бозе-газа.

Адиабатический процесс

График адиабаты (жирная линия) на p\circ V диаграмме для газа.
p — давление газа;
V — объём.

C помощью модели идеального газа можно предсказать изменение параметров состояния газа при адиабатическом процессе. Перепишем уравнение в виде:

\, pV=\nu RT

Продифференцировав обе части, получаем:

\, pdV+Vdp=\nu RdT

Затем, если подставить в это уравнение значение работы и внутренней энергии газа, получим Уравнение Пуассона.

Квантовый идеальный газ

Понижение температуры и увеличение плотности газа может привести к ситуации, когда среднее расстояние между частицами становится соизмеримым с длиной волны де Бройля для этих частиц, что приводит к переходу от классического к квантовому идеальному газу (см. Вырожденный газ). В таком случае поведение газа зависит от спина частиц: в случае полуцелого спина (фермионы) действует статистика Ферми — Дирака (Ферми-газ), в случае целого спина (бозоны) — статистика Бозе — Эйнштейна (Бозе-газ).

Ферми-газ

Для фермионов действует принцип Паули, запрещающий двум тождественным фермионам находиться в одном квантовом состоянии. Вследствие этого при абсолютном нуле температуры импульсы частиц и, соответственно, давление и плотность энергии Ферми-газа отличны от нуля и пропорциональны числу частиц в единице объёма. Существует верхний предел энергии, который могут иметь частицы Ферми-газа при абсолютном нуле (Энергия Ферми \,E_F). Если энергия теплового движения частиц Ферми-газа значительно меньше энергии Ферми, то это состояние называют вырожденным газом.

Особенностью Ферми-газов является крайне слабая зависимость давления от температуры: в нерелятивистском случае давление P \sim K \rho ^{5/3}, в релятивистском — P_{rel} \sim K_{rel}\rho ^{4/3}.

Примерами Ферми-газов являются электронный газ в металлах, сильнолегированных и вырожденных полупроводниках, вырожденный газ электронов в белых карликах и вырожденный газ нейтронов в нейтронных звёздах.

Бозе-газ

Распределение скоростей атомов рубидия вблизи абсолютного нуля.Слева - распределение до образования конденсата, в центре - после образования, справа - после испарения газообразной составляющей и появления чистого конденсата

Так как на бозоны могут быть строго тождественны друг другу[8][9] и, соответственно, принцип Паули на них не распространяется, то при снижении температуры Бозе-газа ниже некоторой температуры T_0 возможен переход бозонов на наинизший энергетический уровень с нулевым импульсом, то есть образование конденсата Бозе — Эйнштейна. Поскольку давление газа равно сумме импульсов частиц, переданной стенке в единицу времени, при \,T < T_0 давление Бозе-газа зависит только от температуры.Этот эффект в 1995 году наблюдался экспериментально, а в 2001 году авторам эксперимента была присуждена Нобелевская премия[10].

Примерами Бозе-газов являются различного рода газы квазичастиц (слабых возбуждений) в твёрдых телах и жидкостях, сверхтекучая компонента гелия II, конденсата Бозе — Эйнштейна куперовских электронных пар при сверхпроводимости. Примером ультрарелятивистского Бозе-газа является фотонный газ[8][9].


См. также

Примечания

  1. Кудрявцев, 1956, с. 185—186
  2. Gay-Lussac, J. L. Recherches sur la dilatation des gaz et des vapeurs // Annales de chimie. — 1802. — Vol. XLIII. — P. 137.
  3. Clapeyron, E. (1834). «Mémoire sur la puissance motrice de la chaleur». Journal de l'École Polytechnique XIV: 153–90.  (фр.) Facsimile at the Bibliothèque nationale de France (pp. 153–90).
  4. Krönig, A. (1856). «Grundzüge einer Theorie der Gase». Annalen der Physik 99 (10): 315–22. DOI:10.1002/andp.18561751008. Bibcode1856AnP...175..315K.  (нем.) Facsimile at the Bibliothèque nationale de France (pp. 315–22).
  5. Clausius, R. (1857). «Ueber die Art der Bewegung, welche wir Wärme nennen». Annalen der Physik und Chemie 176 (3): 353–79. DOI:10.1002/andp.18571760302. Bibcode1857AnP...176..353C.  (нем.) Facsimile at the Bibliothèque nationale de France (pp. 353–79).
  6. Коган М. Н. Динамика разреженного газа (кинетическая теория. М., 1967)
  7. 1 2 Савельев, 2001, с. 24
  8. 1 2 Einstein A. (1924). «Quantentheorie des einatomigen idealen Gases». Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse 1924: 261—267.  (нем.)
  9. 1 2 Einstein A. (1925). «Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung». Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse 1925: 3—14.  (нем.)
  10. Anderson, M. H.; Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A. (1995). «Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor». Science 269: 198—201. DOI:10.1126/science.269.5221.198. PMID 17789847.  (англ.)

Литература

  1. Савельев И. В. Курс общей физики:Молекулярная физика и термодинамика. — М.: Астрель, 2001. — Т. 3. — 208 с. — 7000 экз. — ISBN 5-17-004585-9
  2. П. С. Кудрявцев История физики. — М.: Гос. учебно-педагог. изд-во, 1956. — Т. 1. От античной физики до Менделеева. — 564 с. — 25 000 экз.
  3. V.P.Maslov, Mathematical conception of the gas theory

Wikimedia Foundation. 2010.

Смотреть что такое "Идеальный газ" в других словарях:

  • ИДЕАЛЬНЫЙ ГАЗ — теор. модель газа, в к рой не учитывается вз ствие ч ц газа (ср. кинетич. энергия ч ц много больше энергий их вз ствия). Различают классич. и квант. И. г. Св ва классического И. г. описываются законами классич. физики Клапейрона уравнением и его… …   Физическая энциклопедия

  • идеальный газ — Невязкий нетеплопроводный газ, при движении которого возникают только нормальные напряжения. Примечание В идеальном газе вектор силы, действующей на любую выбранную в нем площадку, ортогонален к этой площадке. [ГОСТ 23281 78] Тематики… …   Справочник технического переводчика

  • ИДЕАЛЬНЫЙ ГАЗ — идеализированная модель газа; в идеальном газе силы взаимодействия между частицами (атомами, молекулами) пренебрежимо малы. К идеальному газу близки разреженные реальные газы при температурах, далеких от температуры их конденсации. Зависимость… …   Большой Энциклопедический словарь

  • идеальный газ — идеализированная модель газа; в идеальном газе силы взаимодействия между частицами (атомами, молекулами) пренебрежимо малы. К идеальному газу близки разреженные реальные газы при температурах, далёких от температуры их конденсации. Зависимость… …   Энциклопедический словарь

  • идеальный газ — idealiosios dujos statusas T sritis fizika atitikmenys: angl. ideal gas; perfect gas vok. ideales Gas, n; vollkommenes Gas, n rus. идеальный газ, m; совершенный газ, m pranc. gaz idéal, m; gaz parfait, m …   Fizikos terminų žodynas

  • Идеальный газ — понятие физики, в узком смысле, теоретическая модель газа, в которой пренебрегают размерами и взаимодействиями частиц газа и учитывают лишь их упругие столкновения. В широкой трактовке, идеальный газ состоит из частиц, представляющих собой… …   Концепции современного естествознания. Словарь основных терминов

  • идеальный газ — idealiosios dujos statusas T sritis Standartizacija ir metrologija apibrėžtis Dujos, kurių dalelės nesąveikauja tarpusavyje. atitikmenys: angl. ideal gas; perfect gas vok. ideales Gas, n rus. идеальный газ, m pranc. gaz parfait, m …   Penkiakalbis aiškinamasis metrologijos terminų žodynas

  • идеальный газ — idealiosios dujos statusas T sritis chemija apibrėžtis Dujos, kurių molekulės tarpusavyje nesąveikauja. atitikmenys: angl. ideal gas; perfect gas rus. идеальный газ …   Chemijos terminų aiškinamasis žodynas

  • идеальный газ — idealiosios dujos statusas T sritis Energetika apibrėžtis Dujos, kurių dalelės nesąveikauja. Joms galioja idealiųjų dujų lygtis (Klapeirono lygtis). atitikmenys: angl. ideal gas vok. ideales Gas, n rus. идеальный газ, m pranc. gaz idéal, m …   Aiškinamasis šiluminės ir branduolinės technikos terminų žodynas

  • Идеальный газ — газ, в котором взаимодействием молекул можно пренебречь, а обмен энергией совершается только при упругих столкновениях молекул. К идеальному газу близки разреженные газы, вдали от температуры их конденсации …   Начала современного естествознания

Книги

Другие книги по запросу «Идеальный газ» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.