Плутоний

Плутоний
94 НептунийПлутонийАмериций
Sm

Pu
Водород Гелий Литий Бериллий Бор Углерод Азот Кислород Фтор Неон Натрий Магний Алюминий Кремний Фосфор Сера Хлор Аргон Калий Кальций Скандий Титан Ванадий Хром Марганец Железо Кобальт Никель Медь Цинк Галлий Германий Мышьяк Селен Бром Криптон Рубидий Стронций Иттрий Цирконий Ниобий Молибден Технеций Рутений Родий Палладий Серебро Кадмий Индий Олово Сурьма Теллур Иод Ксенон Цезий Барий Лантан Церий Празеодим Неодим Прометий Самарий Европий Гадолиний Тербий Диспрозий Гольмий Эрбий Тулий Иттербий Лютеций Гафний Тантал Вольфрам Рений Осмий Иридий Платина Золото Ртуть Таллий Свинец Висмут Полоний Астат Радон Франций Радий Актиний Торий Протактиний Уран Нептуний Плутоний Америций Кюрий Берклий Калифорний Эйнштейний Фермий Менделевий Нобелий Лоуренсий Резерфордий Дубний Сиборгий Борий Хассий Мейтнерий Дармштадтий Рентгений Коперниций Унунтрий Флеровий Унунпентий Ливерморий Унунсептий УнуноктийПериодическая система элементов
94Pu
Monoclinic.svg
Electron shell 094 Plutonium.svg
Внешний вид простого вещества
Plutonium3.jpg
Свойства атома
Имя, символ, номер

Плуто́ний (Pu), 94

Тип группы

Актиноиды

Группа, период, блок

7, 3, f

Атомная масса
(молярная масса)

244,0642 а. е. м. (г/моль)

Электронная конфигурация

[Rn] 5f6 7s2

Радиус атома

162[1][2] пм

Химические свойства
Радиус Ван-дер-Ваальса

200[3] пм

Радиус иона

Pu3+: 100 пм,
Pu4+: 86 пм,
Pu5+: 74 пм,
Pu6+: 71[4] пм

Электроотрицательность

1,28 (шкала Полинга)

Электродный потенциал

Pu←Pu4+ −1,25 В,
Pu←Pu3+ −2,0 В,
Pu←Pu2+ −1,2 В

Степени окисления

2, 3, 4, 5, 6, 7[5]

Энергия ионизации
(первый электрон)

584,7[6] кДж/моль (эВ)

Термодинамические свойства простого вещества
Термодинамическая фаза

Металл

Плотность (при н. у.)

19,84 г/см³

Температура плавления

639,7 °C; 912 K; 1182 °F [1]

Температура кипения

3235 °C; 3507 K; 5855 °F [1]

Теплота плавления

2,8 кДж/моль

Теплота испарения

343,5 кДж/моль

Молярная теплоёмкость

32,77[7] Дж/(K·моль)

Молярный объём

12,12 см³/моль

Давление насыщенного пара [8]
P (Па) 1 10 100 1000 10 000 100 000
при T (К) 1756 1953 2198 2511 2926 3499
Кристаллическая решётка простого вещества
Структура решётки

Моноклинная

Параметры решётки

a=6,183 Å
b=4,822 Å
c=10,963 Å
β=101,8°[9] Å

Температура Дебая

162 K

Прочие характеристики
Теплопроводность

(300 K) 6,74 Вт/(м·К)

Скорость звука

2260[6] м/с

94
Плутоний
Pu
244,064
5f67s2

Плуто́ний (обозначается символом Pu; атомное число 94) — тяжёлый хрупкий радиоактивный металл серебристо-белого цвета[10][11]. В периодической таблице располагается в семействе актиноидов.

Для элемента характерны существенно отличающиеся от остальных элементов структурные и физико-химические свойства[10]. Плутоний имеет семь аллотропных модификаций при определённых температурах и диапазонах давления[12]: α, β, γ, δ, δ', ε и ζ. Может принимать степени окисления от +2 до +7, основными считаются +4, +5, +6. Плотность варьируется от 19,8 (α-Pu) до 15,9 г/см³ (δ-Pu).

Стабильных изотопов не имеет[5]. «Природными» изотопами[~ 1] плутония считаются самый долгоживущий изотоп из всех трансурановых элементов 244Pu и 239Pu [1][13][14]. В природе находится преимущественно в виде диоксида (PuO2), который в воде ещё менее растворим, чем песок (кварц)[11]. Нахождение элемента в природе настолько мало, что его добыча нецелесообразна[~ 2].

Широко используется в производстве ядерного оружия (т. н. «оружейный плутоний»), ядерного топлива для атомных реакторов гражданского и исследовательского назначения и в качестве источника энергии для космических аппаратов[15].

Второй после нептуния (ошибочно «получен» в 1934 году группой Э. Ферми[16][17]; первый изотоп 1940 года Э. Макмилланом и Ф. Абельсоном[18][19][20]) искусственный элемент, полученный в микрограммовых количествах в конце 1940 г. в виде изотопа 238Pu [13]. Первый искусственный химический элемент, производство которого началось в промышленных масштабах[21]. В первой ядерной бомбе в мире, созданной и испытанной в 1945 году в США, использовался плутониевый заряд. Того же типа была и первая бомба, испытанная СССР в 1949 году. Соответственно США, а затем и СССР были первыми странами, освоившими его получение.

Производство плутония очень затратное. Один грамм плутония-238 стоил 1000 долларов США (примерно до 1971 года)[22], в наше время ~4000[23], а один килограмм — миллион[24]. Для получения плутония применяется как обогащенный, так и природный уран. Общее количество плутония, хранящегося в мире во всевозможных формах, оценивалось в 2003 г. в 1239 т[25].

В таблице приведены основные свойства для α-плутония. Данная аллотропическая модификация является основной для плутония при комнатной температуре и нормальном давлении.

Номера CAS:

  • 7440-07-5 для плутония неспецифического состава,
  • 13981-16-3 для 238Pu,
  • 15117-48-3 для 239Pu,
  • 14119-33-6 для 240Pu.

Содержание

История

Открытие

Images.png Внешние изображения
Image-silk.png Первый образец 239Pu, использовавшийся для определения его ядерных свойств в марте 1941 года

Энрико Ферми вместе со своими сотрудниками в Университете Рима сообщил, что они обнаружили химический элемент с порядковым номером 94 в 1934 году[26]. Ферми назвал этот элемент гесперием, считая, что открыл элемент, который сейчас называют плутонием, таким образом сделав предположение о существовании трансурановых элементов и став их теоретическим первооткрывателем. Он придерживался этой позиции и в своей Нобелевской лекции в 1938 году, однако, узнав об открытии деления ядра Отто Фришем и Фрицем Штрассманом, был вынужден сделать в печатной версии, вышедшей в Стокгольме в 1939 году, примечание, указывающее на необходимость пересмотра «всей проблемы трансурановых элементов». Работа немецких учёных показала, что активность, обнаруженная Ферми в его экспериментах, была обусловлена именно делением, а не открытием трансурановых элементов, как он ранее полагал[27][28][29].

Циклотрон в Беркли, использовавшийся для получения нептуния и плутония.

Открытие плутония группой сотрудников Калифорнийского университета в Беркли под руководством Г. Т. Сиборга было совершено с помощью 60-дюймового циклотрона, имевшегося в распоряжении университета. Первая бомбардировка октаоксида триурана-238 (238U3O8) дейтронами, разогнанными в циклотроне до 14—22 МэВ и проходящими через алюминиевую фольгу толщиной 0,002 дюйма, была произведена 14 декабря 1940 года. Сравнивая образцы, полученные и выдержанные в течение 2,3 суток, с выделенной фракцией чистого нептуния, учёные обнаружили существенную разницу в их альфа-активностях и предположили, что её рост через 2 суток обусловлен влиянием нового элемента, являющегося дочерним по отношению к нептунию. Дальнейшие физические и химические исследования продолжались 2 месяца. В ночь с 23 на 24 февраля 1941 года был проведён решающий эксперимент по окислению предполагаемого элемента с помощью пероксиддисульфат-ионов и ионами серебра в качестве катализатора, который показал, что нептуний-238 спустя два дня претерпевает бета-минус-распад и образует химический элемент под номером 94 в следующей реакции:

23892U (d,2n) →
Гленн Теодор Сиборг (1912—1999) вместе с сотрудниками в Беркли впервые синтезировали плутоний. Он был руководителем или ключевым членом команд, получивших ещё восемь элементов: Am, Cm, Bk, Cf, Es, Fm, Md, No[30]. В его честь назван элемент сиборгий[31]. Эдвин Макмиллан и Гленн Сиборг в 1951 году были удостоены Нобелевской премии за «изучение химии трансурановых элементов»[32].

Таким образом, существование нового химического элемента было подтверждено экспериментально Г. Т. Сиборгом, Э. М. Макмилланом, Дж. В. Кеннеди (англ.) и А. К. Валлем (англ.) благодаря изучению его первых химических свойств — возможностью обладать по крайней мере двумя степенями окисления[33][34][35][36][10][37][35][38][39][40][~ 3].

Немного позднее было установлено, что этот изотоп является неделящимся (пороговым), а следовательно, неинтересным для дальнейших исследований в военных целях, так как пороговые ядра не могут служить основой цепной реакции деления. Поняв это, физики-ядерщики США направили свои усилия на получение делящегося изотопа-239 (который по расчетам должен был быть более мощным источником атомной энергии, чем уран-235[36]). В марте 1941 года 1,2 кг чистейшей соли урана, замурованной в большой парафиновый блок, подвергли в циклотроне бомбардировке нейтронами. На протяжении двух суток длилась бомбардировка урановых ядер, в результате чего были получены приблизительно 0,5 мкг плутония-239. Появление нового элемента, как и было предсказано теорией, сопровождалось потоком альфа-частиц[41].

28 марта 1941 года проведённые эксперименты показали, что 239Pu способен делиться под действием медленных нейтронов, с сечением, весьма значительно превышающим сечение для 235U, причём нейтроны, полученные в процессе деления, пригодны для получения следующих актов ядерного деления, то есть позволяют расчитывать на осуществление цепной ядерной реакции. С этого момента были начаты опыты по созданию плутониевой ядерной бомбы и строительства реакторов для его наработки[35][37][42]. Первое чистое соединение элемента было получено в 1942 году[35], а первые весовые количества металлического плутония — в 1943 году[43].

В работе, отправленной на публикацию в журнал Physical Review в марте 1941 г., был описан метод получения и изучения элемента[37]. Однако, публикация этого документа была остановлена после того, как были получены данные, что новый элемент может быть использован в ядерной бомбе. Публикация работы произошла спустя год после Второй мировой войны из соображений безопасности[44] и с некоторыми корректировками[45].

В Третьем рейхе исследователи атома также не оставались бездеятельными. В лаборатории Манфреда фон Ардена были разработаны методы для получения 94-го элемента. В августе 1941 года физик Фриц Хоутерманс закончил свой секретный доклад «К вопросу о развязывании цепных ядерных реакций». В нём он указывал теоретические возможности для изготовления в урановом «котле» нового взрывчатого вещества из природного урана.

Происхождение названия

С помощью этого астрографа были получены первые снимки Плутона.

В 1930 году была открыта новая планета, о существовании которой давно говорил Персиваль Ловелл — астроном, математик и автор фантастических очерков о жизни на Марсе. На основе многолетних наблюдений за движениями Урана и Нептуна он пришёл к заключению, что за Нептуном в солнечной системе должна быть ещё одна, девятая планета, располагающаяся от Солнца в сорок раз дальше, чем Земля. Элементы орбиты новой планеты были им рассчитаны в 1915 году. Плутон был обнаружен на фотографических снимках, полученных 21, 23 и 29 января 1930 г. астрономом Клайдом Томбо в обсерватории Лоуэлла в Флагстаффе (США). Планета была открыта 18 февраля 1930 года[46]. Название планете было дано одиннадцатилетней школьницей из Оксфорда Венецией Бёрни[47]. В греческой мифологии Аид (в римской Плутон) является богом царства мёртвых.

Первое печатное упоминание термина плутоний датируется 21 марта 1942 года[48]. Название 94-му химическому элементу было предложено Артуром Валем и Гленном Сиборгом[49]. В 1948 году Эдвин Макмиллан предложил назвать 93-й химический элемент нептунием, так как планета Нептун — первая за Ураном. По аналогии в честь второй планеты за Ураном, Плутона, был назван плутоний[50][51]. Открытие плутония произошло через 10 лет после открытия карликовой планеты (примерно такой же отрезок времени понадобился на открытие Урана и на именование 92-го химического элемента)[16][~ 4].

Первоначально Сиборг предложил назвать новый элемент «плутием», однако позже решил, что название «плутоний» звучит лучше[52]. Для обозначения элемента он в шутку привёл две буквы «Pu» — это обозначение представилось ему наиболее приемлемым в периодической таблице[~ 5]. Также Сиборгом были предложены некоторые другие варианты названий, например ультимий, экстермий (англ. ultimium, extermium). Однако из-за ошибочного в то время суждения, что плутоний станет последним химическим элементом в периодической таблице[49], элемент назвали «плутоний» в честь открытия последней планеты солнечной системы[16].

Первые исследования

После нескольких месяцев первоначальных исследований, химия плутония стала считаться похожей на химию урана[37][уточнить]. Дальнейшие исследования были продолжены в секретной металлургической лаборатории Чикагского университета. Благодаря[уточнить] Каннингему и Вернеру 18 августа 1942 года был выделен первый микрограмм чистого соединения плутония из 90 кг уранилнитрата, облученного нейтронами на циклотроне[45][53][54][55]. 10 сентября 1942 года — спустя месяц, на протяжении которого ученые увеличивали количество соединения — произошло взвешивание. Этот исторический образец весил 2,77 мкг и состоял из[уточнить] диоксида плутония[56]; в настоящее время хранится в Лоуренсовском зале в Беркли[13]. К концу 1942 года было накоплено 500 мкг соли элемента. Для более подробного изучения нового элемента в США было сформировано несколько групп[45]:

  • группа ученых, которая должна была выделить чистый плутоний химическими методами (Лос-Аламос: J. W. Kennedy, C. S. Smith, A. C. Wahl, C. S. Garner, I. B. Johns),
  • группа, которая изучала поведение плутония в растворах, включая изучение его степеней окисления, потенциалов ионизации и кинетику реакций (Беркли: W. M. Latimer, E. D. Eastman, R. E. Connik, J. W. Gofman и др.),
  • группа, которая изучала химию комплексообразования ионов плутония (Айова: F. H. Spedding, W. H. Sullivan, A. F. Voigt, A. S. Newton) и другие группы.

В ходе исследований было установлено, что плутоний может находиться в степенях окисления от 3 до 6, и что более низшие степени окисления, как правило, более стабильны по сравнению с нептунием. Тогда же было установлено сходство химических свойств плутония и нептуния[45]. В 1942 году неожиданным стало открытие Стэна Томсона, входящего в группу Гленна Сиборга, которое показало, что четырёхвалентный плутоний получается в бо́льших количествах при нахождении в кислом растворе в присутствии фосфата висмута(III) (BiPO4)[36]. В дальнейшем это привело к изучению и применению висмут-фосфатного метода экстракции плутония[57]. В ноябре 1943 г. некоторые количества мелкодисперсного порошка. Впоследствии были получены образцы, которые можно было бы рассмотреть невооруженным глазом[58].

Первый циклотрон в СССР использовавшийся для получения плутония.

В СССР первые опыты по получению 239Pu были начаты в 1943—1944 гг. под руководством академиков И. В. Курчатова и В. Г. Хлопина. В короткий срок в СССР были выполнены обширные исследования свойств плутония[59]. В начале 1945 года на первом в Европе циклотроне, построенном в 1937 году в Радиевом институте, был получен первый советский образец плутония путём нейтронного облучения ядер урана[33][60]. В городе Озёрск с 1945 года началось строительство первого промышленного ядерного реактора по производству плутония, первый объект ПО Маяк, пуск которого был осуществлён 19 июня 1948 года[61].

Производство в Манхэттенском проекте

Наиболее важные места для Манхэттенского проекта.

Манхэттенский проект берёт свое начало с письма Эйнштейна Рузвельту. Письмо обращало внимание президента на то, что нацистская Германия ведёт активные исследования, в результате которых может вскоре обзавестись атомной бомбой[62]. В августе 1939 года Лео Силлард (инициатор письма) попросил подписать письмо своего друга Альберту Эйнштейну[63]. В результате положительного ответа Франклина Рузвельта впоследствии в США был образован Манхэттенский проект[64].

Во время Второй мировой войны целью проекта являлось создание ядерной бомбы. Проект атомной программы (англ. atomic programm), из которой образовался Манхэттенский проект, был одобрен и одновременно создан указом Президента США 9 октября 1941 года. Свою деятельность Манхэттенский проект начал 12 августа 1942 года[65]. Тремя его основными целями являлись[66]:

Памятная фотография ученых, принимавших участие на Чикагской поленнице-1. В первом ряду, второй справа: Лео Силлард; первый слева: Энрико Ферми.

Первым ядерным реактором, позволявшим получать бо́льшие количества элемента по сравнению с циклотронами, была Чикагская поленница-1[35]. Он был введен в эксплуатацию 2 декабря 1942 года благодаря Энрико Ферми и Лео Силларду[67] (последнему принадлежит предложение об использовании графита как замедлителя нейтронов[68]); в этот день была произведена первая самоподдерживающаяся ядерная цепная реакция[69]. Для производства плутония-239 использовались уран-238 и уран-235. Реактор был сооружен под трибунами стадиона Stagg Field Чикагского университета[35]. Он состоял из 6 тонн металлического урана, 34 тонн оксида урана и 400 тонн «чёрных кирпичей» графита. Единственным, что могло остановить цепную ядерную реакцию, были стержни из кадмия, которые хорошо захватывают тепловые нейтроны и, как следствие, могут предотвратить возможное происшествие[70]. Из-за отсутствия радиационой защиты и охлаждения его обычная мощность была всего 0,5…200 Вт[35].

Работники на Графитовом реакторе X-10.

Вторым реактором, который позволил получать плутоний-239, был Графитовый реактор X-10[37]. Он был введен в эксплуатацию 4 ноября 1943 года[71] (строительство длилось 11 месяцев) в городе Оук-Ридж, в настоящее время он располагается на территории Оук-Риджской национальной лаборатории. Этот реактор был вторым в мире после Чикагской поленницы-1 и первым реактором, который был создан в продолжении Манхэттенского проекта[72]. Реактор был первым шагом на пути к созданию более мощных ядерных реакторов (на территории Хэнфорда, Вашингтон), то есть он был экспериментальным. Окончание его работы наступило в 1963 г.[73]; открыт для посещения с 1980-х годов и является одним из старейших ядерных реакторов в мире[74].

Пятого апреля 1944 года Эмилио Сегре получил первые образцы плутония, произведенного в реакторе X-10[73]. В течение 10-ти дней он обнаружил, что концентрация плутония-240 в реакторе очень высока, по сравнению с циклотронами. Данный изотоп имеет очень высокую способность к спонтанному делению, в результате чего повышается общий фон нейтронного облучения[75]. На данном основании был сделан вывод, что использование особо чистого плутония в ядерной бомбе пушечного типа (англ.), в частности в бомбе Худой, может привести к преждевременной детонации[76]. Благодаря тому, что технология разработок ядерных бомб всё более улучшалась, было установлено, что для ядерного заряда лучше всего использовать имплозионную схему с зарядом сферической формы.

Строительство реактора B — первого ядерного реактора, способного получать плутоний в промышленном масштабе.

Первым промышленным ядерным реактором по производству 239Pu является реактор B, расположенный в США. Строительство началось с июня 1943 г. и закончилось в сентябре 1944 г. Мощность реактора составила 250 МВт (в то время как у X-10 всего 1000 кВт). В качестве теплоносителя в этом реакторе впервые применялась вода[77]. Реактор B (вместе с реактором D и реактором F — остальными двумя) позволил получить плутоний-239, который был впервые использован в испытании Тринити. Ядерные материалы, полученные на этом реакторе, были использованы в бомбе сброшенной на Нагасаки 9 августа 1945 г[78]. Построенный реактор был закрыт в феврале 1968 года и расположен[прояснить] в пустынном районе штата Вашингтон, недалеко от города Ричланд (англ.)[79].

Хэнфордский комплекс. Реакторы B, D, F и др. расположены вдоль течения реки в верхней части схемы.

В ходе Манхэттенского проекта на Хэнфордском комплексе (образован в 1943 г. для производства плутония и закрыт в 1988 году вместе с окончанием производства[80]) было создано множество районов (англ. site — место, область, район) предназначенных для получения, хранения, переработки и использования ядерных материалов. На этих захоронениях расположено около 205 кг изотопов плутония (239Pu—241Pu)[81]. Множественные районы были образованы для хранения девяти ядерных реакторов, которые производили химический элемент, многочисленных вспомогательных построек, которые загрязняли окружающую среду. Другие из этих районов были созданы с целью отделения плутония и урана от примесей химическими способами. По закрытию этого комплекса (по состоянию на 2009 г.) утилизировано более 20 т плутония в безопасных формах (для предотвращения ядерного деления)[80].

В 2004 г. в результате раскопок были обнаружены захоронения на территории Хэнфордского комплекса. В числе них был найден оружейный плутоний, который находился в стеклянном сосуде. Этот образец оружейного плутония оказался самым долгоживущим и был исследован Тихоокеанской национальной лабораторией. Результаты показали, что этот образец был создан на графитовом реакторе X-10 в 1944 году[82][83][84][85].

Один из участников проекта (Алан Мэй) был причастен к тайной передаче чертежей о принципах устройства урановой и плутониевой бомб, а также образцов урана-235 и плутония-239[62].

Тринити и Толстяк

Первое ядерное испытание под названием Тринити, проведенное 16 июля 1945 г. возле города Аламогордо, Нью-Мексико, использовало плутоний в качестве ядерного заряда[58][86][87]. В Штучке (англ.) (взрывное устройство) использовались обычные линзы[~ 6] для того, чтобы сжать плутоний для достижения критической массы. Это устройство было создано для пробы нового типа ядерной бомбы «Толстяк» на основе плутония[88]. Одновременно с этим из Ежа (англ.) начали поступать нейтроны для ядерной реакции. Устройство было сделано из полония и бериллия[37]; этот источник применялся в первом поколении ядерных бомб[89], так как в то время единственным источником нейтронов считалась эта композиция[33][~ 7]. Вся эта композиция позволила достичь мощного ядерного взрыва. Полная масса бомбы, использованной при ядерном испытании Тринити, составляла 6 т, хотя в ядре бомбы было всего 6,2 кг плутония[90], а предполагаемая высота для взрыва над городом составляла 225—500 м[91]. Приблизительно 20 % использованного плутония в этой бомбе составило 20000 т в тротиловом эквиваленте[92].

Бомба Толстяк была сброшена на Нагасаки 9 августа 1945. В результате взрыва моментально погибло 70 тыс. человек и ранено ещё 100 тыс[37]. Она имела схожий механизм: сделанное из плутония ядро помещалось в сферическую алюминиевую оболочку, которая обкладывалась химической взрывчаткой. Во время детонирования оболочки плутониевый заряд сжимался со всех сторон и его плотность перерастала критическую, после чего начиналась цепная ядерная реакция[93]. В Малыше, сброшенном на Хиросиму тремя днями ранее, использовался уран-235, но не плутоний. Япония 15 августа подписала соглашение о капитуляции. После этих случаев в СМИ было опубликовано сообщение о применении нового химического радиоактивного элемента — плутония.

Холодная война

Большие количества плутония были произведены во время Холодной войны США и СССР. Реакторы США, находящиеся в Savannah River Site (Северная Каролина) и Хэнфорде, во время войны произвели 103 т плутония[94], в то время как СССР произвел 170 т оружейного плутония[95]. На сегодня около 20 т плутония в ядерной энергетике производится как побочный продукт ядерных реакций[96]. На 1000 т плутония, находящегося в хранилищах, приходится 200 т плутония, извлеченного из ядерных реакторов[37]. На 2007 год СИИПМ оценил мировое количество плутония в 500 т, который примерно одинаково разделен на оружейные и энергетические нужды[97].

Предполагаемая схема туннельного хранилища ядерных отходов в репозитории Юкка Маунтин.

Сразу же по окончанию Холодной войны все ядерные запасы стали проблемой распространения ядерного оружия (англ.). Например в США из извлеченного из ядерного оружия плутония были сплавлены двухтонные блоки, в которых элемент находится в виде инертного оксида плутония(IV)[37]. Данные блоки застеклены боросиликатным стеклом с примесью циркония и гадолиния[~ 8]. Затем эти блоки были покрыты нержавеющей сталью и закопаны в землю на глубину 4 км[37]. Местная и государственная власть США не позволила складировать ядерные отходы в гору Юкка (англ.). В марте 2010 г. власти США решили отозвать лицензию на право складировать ядерные отходы. Барак Обама предложил провести ревизию политики хранения отходов и предоставить рекомендации по разработке новых эффективных методов по контролю за отработанным топливом и отходами[98].

Медицинские эксперименты

На протяжении Второй мировой войны и после её окончания учёные проводили эксперименты на животных и людях, вводя внутривенно дозы плутония[99]. Исследования на животных показали, что несколько миллиграммов плутония на килограмм ткани — смертельная доза[100]. «Стандартная» доза составляла 5 мкг плутония[99], а в 1945 году эта цифра уменьшилась до 1 мкг за счет того, что плутоний склонен к накоплению в костях и из-за этого более опасен, чем радий[100].

Восемнадцать испытаний плутония на людях были проведены без предварительного согласия (англ.), для того, чтобы выяснить, где и как концентрируется плутоний в человеческом организме, и выработать стандарты безопасности обращения с ним. Первые места, в которых проводились эксперименты в рамках Манхэттенского проекта, были: Хэнфорд, Беркли, Лос-Аламос, Чикаго, Оук-Ридж, Рочестер[99].

Свойства

Физические свойства

Плутоний в пакете[~ 9].

Плутоний, как и большинство металлов, имеет яркий серебристый цвет, похожий на никель или железо[1], но на воздухе окисляется, меняя свой цвет сначала на бронзовый, затем на синий цвет закаленного металла и после превращается в тусклый чёрный или зелёный цвета из-за образования рыхлого окисного покрытия[101]. Также есть сообщения об образовании жёлтого и оливкового цвета оксидной плёнки[102][103]. При комнатной температуре плутоний находится в α-форме — это наиболее распространённая для плутония аллотропная модификация. Данная структура примерно такая же жёсткая как серый чугун, если она не легирована другими металлами, которые придадут сплаву пластичность и мягкость. В отличие от большинства металлов, он не является хорошим проводником тепла и электричества[102].

Плутоний имеет аномально низкую для металлов температуру плавления (примерно 640 °C)[104] и необычно высокую температуру кипения (3235 °C)[1][~ 10]. Свинец является более легким металлом, чем плутоний[105], примерно в два раза (разница в плотности составляет 19,86 − 11,34 ≈ 8,52 г/см³)[11].

Как и у остальных металлов, коррозия плутония увеличивается с увеличением влажности. Некоторые исследования утверждают, что влажный аргон может быть более корродирующим элементом, чем кислород; это связано с тем, что аргон не реагирует с плутонием, и как следствие плутоний начинает растрескиваться[106][~ 11].

Диаграмма плотности плутония[59].

Альфа-распад, который сопровождается испусканием ядер гелия, является наиболее распространённым видом радиоактивного распада изотопов плутония[107]. Типичный ядерный боеприпас имеет около 5 кг плутония, в котором находится примерно 12,5·1024 атомов. С учётом периода полураспада 24000 лет, каждую секунду в таком заряде распадается около 11,5·1012 атомов, выделяя 5,157 МэВ благодаря альфа-частицам. В пересчёте на количество энергии, это составляет 9,58 ватт. Тепло, производимое благодаря распаду ядер и испусканию ими альфа-частиц, делает плутоний тёплым на ощупь[51][108].

Строение атома плутония. Электронная конфигурация внешних оболочек 5s2p6d10f66s2p67s2 [4].

Как известно, электрическое сопротивление характеризует способность материала проводить электрический ток. Удельное сопротивление плутония при комнатной температуре очень велико для металла, и эта особенность будет усиливаться с понижением температуры, что для металлов не свойственно[58]. Эта тенденция продолжается вплоть до 100 K[104]; ниже этой отметки электрическое сопротивление будет уменьшаться[58]. С понижением отметки до 20 K сопротивление начинает возрастать из-за радиационной активности металла, причём данное свойство будет зависеть от изотопного состава металла[58].

Плутоний обладает самым высоким удельным электрическим сопротивлением среди всех изученных актиноидов (на данный момент), которое составляет 150 мкОм·см (при 22 °C)[69]. Его твёрдость составляет 261 кг/мм³ (для α-Pu)[10].

Благодаря тому, что плутоний радиоактивен он со временем претерпевает изменения в своей кристаллической решётке[109]. Плутоний претерпевает некое подобие отжига также благодаря самооблучению из-за повышения температуры выше 100 K.

В отличие от большинства материалов плотность плутония увеличивается при нагревании его до температуры плавления на 2,5 %, в то время как у обычных металлов наблюдается уменьшение плотности при повышении температуры[58]. Ближе к точке плавления жидкий плутоний имеет очень высокий показатель поверхностного натяжения и самую высокую вязкость среди других металлов[104][109]. Характерной особенностью плутония является его уменьшение в объёме в диапазоне температур от 310 до 480 °C в отличие от других металлов[59].

Аллотропические модификации

Плутоний имеет семь аллотропных модификаций. Шесть из них (см. рисунок выше) существуют при обычном давлении, а седьмая только при высокой температуре и определенном диапазоне давления[12]. Эти аллотропы, которые различаются по своим структурным характеристикам и показателями плотности, имеют очень похожие значения внутренней энергии. Это свойство делает плутоний очень чувствительным к колебаниям температуры и давления, и приводит к скачкообразному изменению своей структуры[109]. Показатель плотности всех аллотропных модификаций плутония варьируется от 15,9 г/см³ до 19,86 г/см³[96][~ 12]. Наличие многих аллотропных модификаций у плутония делает его трудным металлом в обработке и выкатывании[1], так как он претерпевает фазовые переходы. Причины существования столь разных аллотропных модификаций у плутония не совсем ясны.

Первые три кристаллические модификации — α-, β- и γ-Pu — обладают сложной кристаллической структурой с четырьмя ярко выраженными связями ковалентного характера. Другие — δ-, δ’- и ε-Pu — более высокотемпературные модификации характеризуются более простой структурой[101].

Альфа-форма существует при комнатной температуре в виде нелегированного и необработанного плутония. Она имеет схожие свойства с чугуном, однако имеет свойство превращаться в пластичный материал и образовывать ковкую β-форму при более высоких интервалах температуры[58]. Альфа-форма плутония имеет низкосимметричную моноклинную структуру (кристаллическая структура фаз, которые существуют при комнатных температурах, является низкосимметричной, что более характерно для минералов, чем для металлов), отсюда становится ясным, что она является прочной и плохо проводящей электрический ток модификацией[12]. В данной форме плутоний очень хрупок, однако имеет самую высокую плотность из всех аллотропных модификаций[112]. Фазы плутония характеризуются резким изменением механических свойств — от совершенно хрупкого до пластичного металла[104].

Плутоний в δ-форме обычно существует при значениях температуры от 310 °C до 452 °C, однако может быть стабилен и при комнатной температуре, если он легирован с малопроцентным содержанием галлия, алюминия или церия. Если он находится в сплаве с этими металлами, то это позволяет ему быть использованным при сварке[58]. Дельта-форма имеет более ярко выраженные характеристики металла, а по прочности и ковкости сравнима с алюминием. В ядерной промышленности ударная волна после микроядерного взрыва используется для того, чтобы сжать плутониевое ядро, основным свойством которого будет увеличение плотности по сравнению с α-формой. Данные действия позволят достичь критической массы плутония для его дальнейшего использования[113]. Последняя эпсилон-фаза показывает аномально высокий показатель атомной самодиффузии (англ.)[109].

Плутоний начинает уменьшаться в объёме, когда переходит в δ и δ’-фазы, что объясняется отрицательным коэффициентом термического расширения[104].

Соединения и химические свойства

Изученный ионный и металлический радиусы для плутония[2].
Различные степени окисления плутония в водных растворах.

Актиноиды имеют схожие между собой химические свойства. Меньше всего степеней окисления имеют первые два актиноида и актиний (разброс значений от 3 до 5), далее эти значения увеличиваются и достигают своего пика у плутония и нептуния, затем, после америция, это число опять уменьшается. Данное свойство можно объяснить сложностью поведения электронов у ядер элементов. В 1944 году Гленном Сиборгом была выдвинута гипотеза об актиноидном сжатии, которая предполагает постепенное уменьшение радиусов ионов актиноидов (это же характерно и для лантаноидов). До её выдвижения первые актиноиды (торий, протактиний и уран) относили к элементам 4, 5 и 6-й групп соответственно[69][114].

Плутоний является химически активным металлом[102]. В 1967 году советские ученые установили, что высшая степень окисления нептуния и плутония не 6, а 7[115]. Для этого ученым пришлось окислять озоном PuO22+ в щелочной среде[7]. Плутоний проявляет четыре степени окисления в водных растворах и одну очень редкую[96]:

  • PuIII, в качестве Pu3+ (светло-фиолетовый),
  • PuIV, в качестве Pu4+ (шоколадный),
  • PuV, в качестве PuO2+ (светлый)[~ 13],
  • PuVI, в качестве PuO22+ (светло-оранжевый),
  • PuVII, в качестве PuO53− (зелёный) — также присутствуют семивалентные ионы.

Цвета водных растворов плутония зависят от степени окисления и солей кислот[116]. В них плутоний может находится сразу в нескольких степенях окисления, что объясняется близостью его редокс-потенциалов[117], что в свою очередь объясняется наличием 5f-электронов, которые расположены на локализованной и делокализованной зоне электронной орбитали[118]. При pH 5—8 доминирует четырёхвалентный плутоний[117], который наиболее устойчив среди остальных валентностей (степеней окисления)[4].

Металлический плутоний получается благодаря реакции его тетрафторида с барием, кальцием или литием при температуре 1200 °C[119]:

~\mathrm{PuF_4 + 2Ca\xrightarrow{1200^\circ C} Pu + 2CaF_2}

Он реагирует с кислотами, кислородом и их парами, но только не с щелочами[58] (в растворах которых заметно не растворяется[7], как и большинство актиноидов[69]). Быстро растворяется в хлороводороде, иодоводороде, бромоводороде, 72 % хлорной кислоте, 85 % ортофосфорной кислоте, концентрированной CCl3COOH, сульфаминовой кислоте и кипящей концентрированной азотной кислоте[102]. Плутоний инертен к концентрированным серной и уксусной кислотам; в их растворах медленно растворяется, то есть реагирует и образует соответствующие соли[10]. При температуре 135 °C металл самовоспламенится благодаря реакции с кислородом, а если его поместить в атмосферу тетрахлорметана, то взорвётся[37].

Во влажном кислороде металл быстро окисляется, образуя оксиды и гидриды. Металлический плутоний реагирует с большинством газов при повышенных температурах[102]. Если металл достаточно долго подвергается воздействию малых количеств влажного воздуха, то на его поверхности образуется диоксид плутония. Кроме того, может образоваться и его дигидрид, но только при недостатке кислорода[58]. Ионы плутония во всех степенях окисления склонны к гидролизу и комплексообразованию[59]. Способность образовывать комплексные соединения увеличивается в ряду Pu5+ < Pu6+ < Pu3+ < Pu4+ [5].

При комнатной температуре свежий срез плутония имеет серебристый цвет, который затем тускнеет до серого[51]. Благодаря тому, что поверхность металла становится пассивированной он становится пирофорным, то есть способным к самовозгоранию, поэтому металлический плутоний как правило обрабатывается в инертной атмосфере аргона или азота. Расплавленный металл должен храниться в вакууме, либо в атмосфере инертного газа, чтобы избежать реакции с кислородом[58].

Плутоний обратимо реагирует с чистым водородом, образуя гидрид плутония при температурах 25—50 °C[10][109]. Кроме того, он легко взаимодействует с кислородом, образовывая монооксид и диоксид плутония, а также оксиды (но не только их, см. раздел ниже) переменного состава (бертоллиды). Оксиды расширяют плутоний на 40 % от его изначального объёма. Металлический плутоний энергично реагирует с галогеноводородами и галогенами, в соединениях с которыми обычно проявляет степень окисления +3, однако известны галогениды состава PuF4 и PuCl4 [10][123]. При реакции с углеродом образует его карбид (PuC), с азотом — нитрид (при 900 °C), с кремнием — силицид (PuSi2)[37][96]. Карбид, нитрид, диоксид плутония имеют температуру плавления больше 2000 °C и потому применяются в качестве ядерного топлива[7].

Тигли, используемые для хранения плутония, должны выдерживать его сильные окислительно-восстановительные свойства. Тугоплавкие металлы, такие как тантал и вольфрам, наряду с более стабильными оксидами, боридами, карбидами, нитридами и силицидами, также могут выдержать свойства плутония. Плавка в электродуговой печи может быть использована для получения малых количеств металла без применения тиглей[58].

Четырёхвалентный церий применяется в качестве химического симулянта плутония(IV)[124].

Электронная структура: 5f-электроны

Плутоний является элементом, в котором 5f-электроны расположены на границе локализованных и делокализованных электронов, поэтому он считается одним из самых комплексных и трудных элементов для изучения[118].

Аномальное поведение плутония обусловлено его электронной структурой. Энергетическая разница между 6d и 5f-электронами очень мала. Размеров 5f-оболочки вполне достаточно для того, чтобы они формировали атомную решётку между собой; это происходит на самой границе между локализованными и соединёнными между собой электронами. Близость электронных уровней приводит к формированию низкоэнергетической электронной конфигурации, с примерно одинаковыми уровнями энергии. Это приводит к формированию 5fn7s2 и 5fn−17s26d1 электронных оболочек, что приводит к сложности его химических свойств. 5f-электроны участвуют в формировании ковалентных связей и комплексных соединений у плутония[109].

Нахождение в природе

В урановых рудах в результате захвата нейтронов (например, нейтронов из космического излучения) ядрами урана образуется нептуний (239Np), продуктом β-распада которого и является природный плутоний-239. Однако плутоний образуется в таких микроскопических количествах (самое большое отношение 239Pu/238U составляет 15·10−12), что о его добыче из урановых руд не может быть и речи[117].

Природный плутоний образуется благодаря следующей ядерной реакции[117]:

\mathrm{^{238}_{\ 92}U\ +\ ^{1}_{0}n\ \xrightarrow{\gamma} \ ^{239}_{\ 92}U\ \xrightarrow[23.5 \ min]{\beta^-} \ ^{239}_{\ 93}Np\ \xrightarrow[2.3565 \ d]{\beta^-} \ ^{239}_{\ 94}Pu}

По этой же реакции плутоний-239 синтезируется в промышленных масштабах (см. изотопы и синтез).

Распространение следующих после урана элементов резко падает.

Незначительные количества по крайней мере двух последних изотопов плутония (239Pu и, возможно, 244Pu) могут быть найдены в природе[69]. В среднем, содержание 239Pu примерно в 400 тыс. раз меньше, чем у радия[16]. Малые количества плутония-239 — триллионная доля — и продукты распада могут быть найдены в урановых рудах[58], например, в природном ядерном реакторе в Окло (англ.), Габон[125]. Этот «природный ядерный реактор» считается единственным в мире, в котором в настоящее время происходит образование актиноидов и их продуктов деления в геосфере[117]. Благодаря масс-спектрометрическим измерениям было установлено наличие плутония-244 (он имеет самый большой период полураспада — примерно 80 млн лет) в докембрийском бастнезите[126].

Отношение плутония к урану, разработка руд которого планируется на 2013 год в шахте Cigar Lake (англ.), составляет примерно от 2,4·10−12 до 44·10−12[127]. Однако даже плутоний-244 находится в меньших количествах в природе, имея период полураспада 80 млн лет[128]. Эти малые количества плутония-239 получаются следующим способом: в редких случаях уран-238 испытывает спонтанное деление, и в ходе этого процесса ядро испускает один или два свободных нейтрона с некоторой кинетической энергией. Когда один из этих нейтронов сталкивается с ядром урана-238, то образуется уран-239. Имея очень малый период полураспада, уран-239 распадается на нептуний-239, и потом этот изотоп превращается в плутоний-239 (см. реакцию выше).

Поскольку относительно долгоживущий изотоп плутоний-240 находится в цепочке распада плутония-244, то его распад имеет место быть, однако это происходит очень редко (1 случай на 10000). Очень небольшие количества плутония-238 относятся к весьма редкому двойному бета-распаду материнского изотопа — урана-238, который был найден в урановых рудах[129]. В 1948 г. плутоний был впервые выделен из урановой смоляной руды Г. Т. Сиборгом и М. Перлманом[130].

Минимальные количества плутония гипотетически могут находится в человеческом организме, учитывая что было проведено около 550-ти ядерных испытаний так или иначе связанных с плутонием. Большинство подводных и воздушных ядерных испытаний было прекращено благодаря договору о запрещении ядерных испытаний, который был подписан в 1963 году и ратифицирован СССР, США, Великобританией и другими государствами. Некоторые государства продолжили ядерные испытания.

Именно потому, что плутоний-239 был синтезирован специально для ядерных испытаний, на сегодняшний день он является самым распространённым и часто используемым синтезированным нуклидом из всех изотопов плутония[37].

Изотопы

Открытие изотопов плутония началось с 1940 года, когда был получен плутоний-238. В настоящее время он считается одним из важнейших нуклидов. Годом позднее был открыт самый важный нуклид — плутоний-239[50], впоследствии нашедший свое применение в ядерной и космической промышленности. Химический элемент является актиноидом, один из его изотопов, который упомянут выше, входит в основную тройку делящихся изотопов[44] (уран-233 и уран-235 являются остальными двумя)[131]. Как и изотопы всех актиноидов, все изотопы плутония являются радиоактивными[132].

Наиболее важные ядерные свойства нуклидов плутония перечислены в таблице: