Теорема Мардена

Теорема Мардена

Теорема Мардена даёт геометрическую связь между нулями комплексного многочлена третьей степени и нулями его производной:

Теорема мардена

Предположим, что нули z1, z2, z3 многочлена \scriptstyle p(z) третьей степени неколлинеарны. Существует единственный эллипс, вписанный в треугольник с вершинами z1, z2, z3 и касающийся его сторон в серединах: эллипс Штейнера. Фокусы этого эллипса и есть нули производной \scriptstyle p'(z).


Марден приписывает теорему Йоргу Сибеку (нем. Jörg Siebeck)[1] и приводит 9 ссылок на статьи, которые включают варианты данной теоремы.

Примечания

  1. Siebeck, Jörg (1864), "«Über eine neue analytische Behandlungweise der Brennpunkte»", de:Journal für die reine und angewandte Mathematik Т. 64: 175-182, ISSN 0075-4102  (нем.)

Ссылки


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Полезное


Смотреть что такое "Теорема Мардена" в других словарях:

  • Эллипс Штейнера — Эллипсы Штейнера: Для данного треугольника существует единственное аффинное преобразование, которое переводит правильный треугольник в данный треугольник. Образ вписанной окружности правильного треугольника при таком преобразовании является… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»