- Статистика (функция выборки)
-
Статистика (в узком смысле) — это измеримая числовая функция от выборки, не зависящая от неизвестных параметров распределения.
В широком смысле термин (математическая) статистика обозначает область знаний (и соответствующие ей учебные дисциплины), в которой излагаются общие вопросы сбора, измерения и анализа массовых статистических (количественных или качественных) данных.
Содержание
Определение
Пусть задана случайная выборка
наблюдений
. Как правило, поскольку речь идет о задачах математической статистики, распределение элементов этой выборки известно исследователю не полностью (например, содержит неизвестные числовые параметры).
Статистикой называется произвольная измеримая функция выборки
, которая не зависит от неизвестных параметров распределения.
Условие измеримости статистики означает, что эта функция является случайной величиной, то есть определены вероятности ее попадания в интервалы и другие борелевские множества на прямой.
Наиболее содержательный аспект данного понятия, отличающий его от прочих случайных величин, зависящих от выборки, заключается в том, что от неизвестных параметров эта функция не зависит, то есть исследователь может по имеющимся в его распоряжении данным найти значение этой функции, а, следовательно — основывать на этом значении оценки и прочие статистические выводы.
Пример
Предположим, что имеется числовая выборка
, элементы которой имеют нормальное распределение
. Допустим, что значение параметра
(математического ожидания) известно, то есть это некоторое конкретное число, а значение среднеквадратичного отклонения
неизвестно (и его требуется оценить). Для этого может быть использована следующая статистика:
Однако если значение параметра
также неизвестно, то данная функция не является статистикой. В этом случае ее по-прежнему можно исследовать теоретически (например, доказывать, что математическое ожидание
равно
), однако вычислить ее числовое значение нельзя, поэтому для получения непосредственных статистических выводов она не может быть использована. В этом случае оценка параметра
строится другим способом (см. ниже).
Ниже приведены примеры некоторых часто используемых статистик. Все они предполагают, что наблюдения
являются числовыми,
.
В последние годы активно развивается также статистика объектов нечисловой природы.
Статистики, используемые для оценки моментов (выборочные моменты)
Выборочное среднее
Выборочная дисперсия
Несмещённая оценка дисперсии:
Выборочный момент k-го порядка
Выборочное среднее есть момент первого порядка.
Выборочный центральный момент k-го порядка
Выборочная дисперсия есть центральный момент второго порядка.
Несмещённые оценки центральных моментов:
Выборочный коэффициент асимметрии
Если плотность распределения симметрична, то
.
Если левый хвост распределения тяжелее, то
.
Если правый хвост распределения тяжелее, то
.
Выборочный коэффициент асимметрии используется для проверки распределения на симметричность, а также для грубой предварительной проверки на нормальность. Он позволяет отвергнуть, но не позволяет принять гипотезу нормальности.
Выборочный коэффициент эксцесса
Нормальное распределение имеет нулевой эксцесс,
.
Если хвосты распределения «легче», а пик острее, чем у нормального распределения, то
.
Если хвосты распределения «тяжелее», а пик более «приплюснутый», чем у нормального распределения, то
.
Выборочный коэффициент эксцесса часто используется для грубой предварительной проверки на нормальность. Он позволяет отвергнуть, но не позволяет принять гипотезу нормальности.
Статистики, связанные с эмпирическим распределением
Эмпирическое распределение случайной величины
, построенное по случайной выборке
, есть функция
При любом фиксированном
значение
можно рассматривать как статистику.
Порядковые статистики
Порядковые статистики основаны на вычислении вариационного ряда, который получается из исходной выборки
путём упорядочивания её элементов по возрастанию:
Значение
называется k-й порядковой статистикой.
Выборочная квантиль
Выборочная
-квантиль при
есть
Размах выборки
Выборочная медиана
Ранговые статистики
Значение
называется рангом элемента выборки
, если
.
Ранговой статистикой называется любая статистика, которая является функцией от рангов элементов
, а не от их значений
. Переход от значений к их рангам позволяет строить непараметрические статистические тесты, которые не опираются на априорные предположения о функции распределения выборки. Они имеют гораздо более широкую область применения, чем параметрические статистические тесты.
Средний ранг
Аналогом выборочного среднего является средний ранг:
Линейные ранговые статистики
Многие используемые на практике ранговые статистики принадлежат семейству линейных ранговых статистик, либо асимптотически приближаются к линейным при
. Линейная ранговая статистика в общем случае имеет вид
где
— произвольная заданная числовая матрица размера
.
Литература
- Вероятность и математическая статистика: Энциклопедия / Под ред. Ю. В. Прохорова. — М.: Большая российская энциклопедия, 2003. — 912 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
Ссылки
Для улучшения этой статьи желательно?: Категория:- Математическая статистика
-
Wikimedia Foundation. 2010.