- взаимно-перпендикулярный
-
взаимно-перпендикулярный
Слитно или раздельно? Орфографический словарь-справочник. — М.: Русский язык. Б. З. Букчина, Л. П. Какалуцкая. 1998.
Слитно или раздельно? Орфографический словарь-справочник. — М.: Русский язык. Б. З. Букчина, Л. П. Какалуцкая. 1998.
взаимно перпендикулярный — вза имно перпендикул ярный … Русский орфографический словарь
взаимно-перпендикулярный — взаи/мно перпендикуля/рный … Слитно. Раздельно. Через дефис.
ВЕКТОР — В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера
Гипербола (математика) — У этого термина существуют и другие значения, см. Гипербола. Гипербола и её фокусы … Википедия
Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность традиционное название для двумерного многообразия в … Википедия
Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия поверхности — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Внутренняя геометрия — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия
Нормальное сечение — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… … Википедия