локально-нильпотентный

локально-нильпотентный
adj. locally nilpotent

Русско-английский словарь математических терминов. — Американское математическое общество. . 1990.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "локально-нильпотентный" в других словарях:

  • ЛОКАЛЬНО НИЛЬПОТЕНТНАЯ АЛГЕБРА — алгебра, всякая конечно порожденная подалгебра к рой нильпотентна. Л. н. а. удобно себе представлять как объединение возрастающей цепочки нильпотентных подалгебр. Л. н. а. с ассоциативными степенями является нильалгеброй. Л. н. а. Ли является… …   Математическая энциклопедия

  • РАДИКАЛЫ — колец и алгебр понятие, впервые возникшее в классической структурной теории конечномерных алгебр в нач. 20 в. Под Р. первоначально понимался наибольший нильпотентный идеал конечномерной ассоциативной алгебры. Алгебры с нулевым Р. (называемые… …   Математическая энциклопедия

  • КОЛЬЦА И АЛГЕБРЫ — множества с двумя бинарными операциями, к рые обычно принято наз. сложением и умножением. Кольцом наз. множество: 1) являющееся абелевой группой относительно сложения (в частности, в кольце существует нулевой элемент, обозначаемый 0, и… …   Математическая энциклопедия

  • ЖОРДАНА РАЗЛОЖЕНИЕ — 1) Ж. р. функции ограниченной вариации представление функции f в виде где f1 и f2 монотонно возрастающие функции. Ж. р. наз. также представление обобщенной меры, или зарядаm(Е)измеримого множества Ев виде разности мер где хотя бы одна из мерm+… …   Математическая энциклопедия

  • МАЛЬЦЕВА АЛГЕБРА — м у ф а н г л и е в а алгебра, линейная алгебра над полем, удовлетворяющая тождествам где якобиан элементов х, у, z.M. а. представляют собой естественное обобщение алгебр Ли. Любая М. а. является бинарно лиевой алгеброй. М. а. были введены А. И.… …   Математическая энциклопедия

  • ДИСКРЕТНАЯ ПОДГРУППА — подгруппа Г топологич. группы G(в частности, подгруппа группы Ли), являющаяся дискретным подмножеством топологич. пространства G. В локально компактных топологич. группах (в частности, в группах Ли) выделяют решетки Д. п., для к рых… …   Математическая энциклопедия

  • РАДИКАЛ — группы G наибольшая нормальная подгруппа группы G, принадлежащая данному радикальному классу групп. Класс групп наз. радикальным, если он замкнут относительно гомоморфных образов, а также относительно бесконечных расширений , т. е. если классу… …   Математическая энциклопедия

  • Спектр кольца — У этого термина существуют и другие значения, см. Спектр (значения). Спектром кольца называется множество всех простых идеалов кольца . Спектр обозначается так: . Гомоморфизм из кольца в кольцо индуцирует отображение их спектров (н …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»