таблица истинности


таблица истинности
таблица, с помощью которой устанавливается истинностное значение сложного высказывания при данных значениях входящих в него простых высказываний. В классической математической логике предполагается, что каждое простое (не содержащее логических связок) высказывание является либо истинным, либо ложным, но не тем и другим одновременно. Нам не известно, истинно или ложно данное простое высказывание, чтобы установить это, потребовалось бы обратиться к фактам действительности, но логика этого не делает. Однако мы знаем, что у высказывания имеется лишь две возможности - быть истинным либо быть ложным. Когда с помощью логических связок мы соединяем простые высказывания в сложное, встает вопрос: при каких условиях сложное высказывание считается истинным, а при каких - ложным? Для ответа на этот вопрос и служат Т. и. Каждая логическая связка имеет свою таблицу, которая показывает, при каких наборах значений простых высказываний сложное высказывание с этой связкой будет истинным, а при каких - ложным. Приведем Т. и. для отрицания, конъюнкции, дизъюнкции и импликации ("и" означает "истина", "л" - "ложь"):А
таблица истинности А
А
В
А&В
A v B
A-> в
и
л
и
и
и
и
и
л
и
и
л
л
и
л
л
и
л
и
и
л
л
л
л
и
Пользуясь приведенными таблицами, для любого сложного высказывания, содержащего указанные связки, можем построить Т. и..
которая покажет, когда высказывание истинно и когда - ложно. В качестве примера построим Т. и. для такого высказывания: (A vтаблица истинностиB) -> B.
А
B
(Avтаблица истинностиB) ->B
1
и
и
и
и
2
и
л
и
л
3
л
и
л
и
4
л
л
и
л
Сначала, руководствуясь таблицей для отрицания, выписываем значения таблица истинностиВ (в таблице опущены): 1) "л"; 2) "и"; 3) "л"; 4) "и". Затем устанавливаем значения дизъюнктивного высказывания, стоящего в скобках. Для случая (1): A истинно, таблица истинности В - ложно, в таблице для дизъюнкции это соответствует случаю (2), при котором дизъюнкция истинна, поэтому под нашим высказыванием пишем "и", и т. д. И наконец, выписываем значения истинности для импликации, которая в данном случае является главной связкой нашего высказывания. Построенная таблица говорит, что наше сложное высказывание истинно при первом и третьем наборах значений простых высказываний и ложно при втором и четвертом наборах.
Т. и. позволяет выделить из класса формул нашего языка всегда истинные формулы (тавтологии), всегда ложные формулы, установить отношение логического следования между формулами, их эквивалентность и т. д. Наряду с двузначными Т. и. в логике используются таблицы с тремя, четырьмя и т. д. значениями истинности, построением и анализом которых занимается многозначная логика.

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.

Смотреть что такое "таблица истинности" в других словарях:

  • Таблица истинности — Таблица истинности  это таблица, описывающая логическую функцию. Под «логической функцией» в данном случае понимается функция, у которой значения переменных (параметров функции) и значение самой функции выражают логическую истинность.… …   Википедия

  • таблица истинности — — [http://www.iks media.ru/glossary/index.html?glossid=2400324] Тематики электросвязь, основные понятия EN truth table …   Справочник технического переводчика

  • таблица истинности — teisingumo lentelė statusas T sritis automatika atitikmenys: angl. Boolean operation table; truth diagram; truth table vok. Wahrheitstabelle, f rus. таблица истинности, f pranc. table de vérité, f …   Automatikos terminų žodynas

  • таблица истинности (двоичной функции) — — [http://www.rfcmd.ru/glossword/1.8/index.php?a=index&d=4885] Тематики защита информации EN truth table …   Справочник технического переводчика

  • ИСТИННОСТИ ТАБЛИЦА —     ИСТИННОСТИ ТАБЛИЦА см. Логика высказываний. Новая философская энциклопедия: В 4 тт. М.: Мысль. Под редакцией В. С. Стёпина. 2001 …   Философская энциклопедия

  • диаграмма истинности — таблица истинности — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом Синонимы таблица истинности EN truth diagram …   Справочник технического переводчика

  • Карта Карно — Рис. 1 Пример Куба Карно Куб Карно графический способ минимизации переключательных (булевых) функций, обеспечивающий относительную простоту работы с большими выражениями и устранение потенциальных гонок. Представляет собой операции попарного… …   Википедия

  • ЭЛЕКТРОННЫЕ СХЕМЫ — графические изображения и элементы многочисленных и разнообразных приборов и устройств электроники, автоматики, радио и вычислительной техники. Проектирование и разработка базовых электронных схем и создаваемых из них более сложных систем как раз …   Энциклопедия Кольера

  • Троичные функции — Троичной функцией в теории функциональных систем и троичной логике называют функцию типа , где   троичное множество, а   неотрицательное целое число, которое называют арностью или местностью функции. Элементы множества  цифровые… …   Википедия

  • Полином Жегалкина — Полином Жегалкина  многочлен над кольцом , то есть полином с коэффициентами вида 0 и 1, где в качестве произведения берётся конъюнкция, а в качестве сложения  исключающее или. Полином был предложен в 1927 году… …   Википедия

Книги



Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.