логика классов


логика классов
раздел математической логики, соответствующий узкому исчислению одноместных предикатов, которые заменяются объемами, классами. Л. к. соответствует и силлогистике Аристотеля. Иногда Л. к. рассматривается как формализованная теория множеств, в других случаях - как расширение логики высказываний. Если в логике высказываний отвлекаются от связей между субъектом и предикатом высказывания, то в Л. к. эти связи учитываются. В число классов в Л. к. включается и пустой класс (0), содержащий нулевое множество элементов, и универсальный класс (1), включающий все объекты рассматриваемой области. С классами можно производить операции пересечения, объединения и дополнения. К алфавиту логики высказываний в Л.к. добавляются переменные а, b, с, ... для классов; знаки, обозначающие операции с классами; постоянные термы 0 и 1 и знаки для обозначения отношений между классами. Далее дается индуктивное определение терма и класса. Вводятся отношение включения класса в класс (аb) (а включается в класс b), отношение равенства двух классов (а=b). Оба эти отношения могут быть определены через отношение принадлежности элемента классу (аIb).
Элементарные формулы в Л. к. имеют вид: иIv, u=v, где и и v - термы. Если формула Р является истинной, то это означает, что она истинна для любых классов области, являющихся значениями переменных, входящих в формулу Р. Если она истинна в любых областях, то она тождественно-истинна. Так, формула (a C b I a) гласит, что всякий элемент, содержащийся в обоих классах а и b, содержится и в классе а. Эта формула истинна не только для любых классов а и b данной области D, но и для всяких классов любой области D.
Таблицы истинности, соответствующие возможным значениям для термов (u C v), (U E V), U\', (и E v), (u= v), будут совпадать соответственно с таблицами конъюнкции, дизъюнкции, отрицания, импликации, эквивалентности. Четыре Аристотелевы формы элементарных высказываний - общеутвердительного А, частноутвердительного I, общеотрицательного Е, частноотрицательного О (см.: Суждение) - могут быть соответственно выражены так: и I v ("Все и суть v"); логика классов(и I v\') ("Некоторые и суть v", т. е. "Неверно, что все и суть не-v"); (иIv\') ("Никакое и не есть v", т. е. "Всякое и есть не -v"); логика классов(иEv) (Некоторые и не суть v", т. е. "Неверно, что все и суть v").

Словарь по логике. — М.: Туманит, изд. центр ВЛАДОС. . 1997.

Смотреть что такое "логика классов" в других словарях:

  • ЛОГИКА КЛАССОВ —         раздел логики, в котором рассматриваются классы (множества) предметов, задаваемые характеристическими свойствами этих предметов (элементов классов). В совр. логике Л. к. может пониматься как «алгебра множеств», т. е. интерпретироваться… …   Философская энциклопедия

  • ЛОГИКА КЛАССОВ — логика объемов понятий, раздел логических теорий, в котором изучаются операции над классами (множествами) и свойства этих операций (законы логики классов) …   Большой Энциклопедический словарь

  • логика классов — логика объёмов понятий, раздел логических теорий, в котором изучаются операции над классами (множествами) и свойства этих операций (законы логики классов). * * * ЛОГИКА КЛАССОВ ЛОГИКА КЛАССОВ, логика объемов понятий, раздел логических теорий, в… …   Энциклопедический словарь

  • ЛОГИКА КЛАССОВ — логика объёмов понятий, раздел логич. теорий, в к ром изучаются операции над классами (множествами) и свойства этих операций (законы Л. к.) …   Естествознание. Энциклопедический словарь

  • Логика классов —         раздел логики (См. Логика), основным предметом рассмотрения в котором служат классы (множества) предметов, задаваемые характеризующими их свойствами, общими для всех входящих в данный класс элементов. В рамках современной формальной… …   Большая советская энциклопедия

  • Логика — (греч. logike̅́)         наука о приемлемых способах рассуждения. Слово «Л.» в его современном употреблении многозначно, хотя и не столь богато смысловыми оттенками, как древнегреч. lógos, от которого оно происходит. В духе традиции с понятием Л …   Большая советская энциклопедия

  • логика в ХХ веке — Развитие логики и математики в ХХ веке Поиск оснований и открытие антиномий теории множеств     Программа концептуальной ригоризации основных математических понятий, как мы уже знаем, наметилась еще в прошлом веке. Вейерштрасс и его школа… …   Западная философия от истоков до наших дней

  • КЛАССОВ ИСЧИСЛЕНИЕ — традиционное, восходящее к Дж. Булю (G. Boole) название раздела математич. логики, изучающего логику классов. К. и. фактически представляет собой логику высказываний, в к рой дополнительно рассматривается субъектно предикатная структура… …   Математическая энциклопедия

  • ЛОГИКА В РОССИИ — эволюция современной (математической) логики в России. Кон. 19 в. и нач. 20 в. знаменуют выход логики за рамки силлогистики и появление логиков новаторов, таких как П.С. Порецкий, М.В. Каринский, Л.В. Рутковский, СИ. Поварнин, и др. Казанский… …   Философская энциклопедия

  • логика многозначная —         ЛОГИКА МНОГОЗНАЧНАЯ обобщение классической двузначной логики С2 Логика высказываний), посредством которого к обычным истинностным значениям «истина» и «ложь» добавляются другие истинностные значения. Именно на этом пути была впервые… …   Энциклопедия эпистемологии и философии науки

Книги

Другие книги по запросу «логика классов» >>


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»

We are using cookies for the best presentation of our site. Continuing to use this site, you agree with this.