- fingo
- fingo fingo, finxi, fictum, ere гладить
Латинско-русский словарь. 2003.
Латинско-русский словарь. 2003.
Fingo — may refer to:* The Fingo (Mfengu) tribe of South Africa. * Fingo fever, a disease of Victorian Australia. * FinGO, a mobile communications company. * The hypotheses non fingo . * Fingo (charm), the name for a Norwegian folk charm supposed to… … Wikipedia
Fingo — (Fisju), Fürstenthum auf der zum Japanischen Reiche gehörigen Insel Kiu siu; schöne Waldungen; Ackerbau … Pierer's Universal-Lexikon
Fingö — Fingö, schwedische Skäreninsel im Bottnischen Meerbusen, zum Linköpings Län gehörig … Pierer's Universal-Lexikon
Fingo — Fingo, Kaffernstamm, nordöstl. vom Keiflusse, 152.000 Köpfe; ihr Gebiet 1875 als Transkeidistrikt der Kapkolonie einverleibt … Kleines Konversations-Lexikon
Fingo — Fingos Fingos Départ des Fingos (1840) Populations significative … Wikipédia en Français
fingo — ˈfiŋ(ˌ)gō noun (plural fingo or fingos or fingoes) Usage: usually capitalized 1. a. : a So. African people descended from a group of Negro refugees who were driven southward in native wars and later settled east of Great Fish river, Union of So.… … Useful english dictionary
Fingo — /ˈfɪŋoʊ/ (say fingoh) noun 1. a people of the Ciskei and Transkei regions of South Africa whose language is Xhosa. 2. (plural Fingo or Fingos) a member of this people. –adjective 3. of or relating to this people …
Fingo (Mfengu) — Fingo (Ama Fengu, wanderers), a Bantu Negro people, allied to the Zulu family, who have given their name to the district of Fingoland, the South West portion of the Transkei division of the Cape Province. The Fingo tribes were formed from the… … Wikipedia
fingo — fin·go … English syllables
Hypotheses non fingo — (Latin for I feign no hypotheses ) is a famous phrase used by Isaac Newton in an essay General Scholium which was appended to the second (1713) edition of the Principia .It was his answer to those who had publicly challenged him to give an… … Wikipedia
Hypotheses non fingo — (en latín No compongo [una] hipótesis ) es una frase famosa empleada por Isaac Newton en su ensayo General Scholium, que se publicó en la tercera edición de sus Philosophiae Naturalis Principia Mathematica. Era su respuesta a aquellos que le… … Wikipedia Español