- torsion pairing
- torsion pairing.(Источник: «Англо-русский толковый словарь генетических терминов». Арефьев В.А., Лисовенко Л.А., Москва: Изд-во ВНИРО, 1995 г.)
.
.
Weil pairing — In mathematics, the Weil pairing is a construction of roots of unity by means of functions on an elliptic curve E , in such a way as to constitute a pairing (bilinear form, though with multiplicative notation) on the torsion subgroup of E . The… … Wikipedia
торсионная конъюгация — torsion pairing торсионная конъюгация. Kонъюгация негомологичных участков хромосом в мейозе, обусловленная взаимным скручиванием, имеющим место в биваленте; в зоне Т.к. никогда не происходит образования истинных хиазм. (Источник: «Англо русский… … Молекулярная биология и генетика. Толковый словарь.
торсионная конъюгация — «Конъюгация» негомологичных участков хромосом в мейозе, обусловленная взаимным скручиванием, имеющим место в биваленте; в зоне Т.к. никогда не происходит образования истинных хиазм. [Арефьев В.А., Лисовенко Л.А. Англо русский толковый словарь… … Справочник технического переводчика
Торсионная конъюгация — * тарсійная кан’югацыя * torsion pairing … Генетика. Энциклопедический словарь
Quantum cohomology — In mathematics, specifically in symplectic topology and algebraic geometry, a quantum cohomology ring is an extension of the ordinary cohomology ring of a closed symplectic manifold. It comes in two versions, called small and big; in general, the … Wikipedia
Physical Sciences — ▪ 2009 Introduction Scientists discovered a new family of superconducting materials and obtained unique images of individual hydrogen atoms and of a multiple exoplanet system. Europe completed the Large Hadron Collider, and China and India took… … Universalium
Abelian variety — In mathematics, particularly in algebraic geometry, complex analysis and number theory, an Abelian variety is a projective algebraic variety that is at the same time an algebraic group, i.e., has a group law that can be defined by regular… … Wikipedia
Signature of a knot — The signature of a knot is a topological invariant in knot theory. It may be computed from the Seifert surface.Given a knot K in the 3 sphere, it has a Seifert surface S whose boundary is K . The Seifert form of S is the pairing phi : H 1(S) imes … Wikipedia
Algebraic K-theory — In mathematics, algebraic K theory is an important part of homological algebra concerned with defining and applying a sequence Kn(R) of functors from rings to abelian groups, for all integers n. For historical reasons, the lower K groups K0 and… … Wikipedia
Poincaré duality — In mathematics, the Poincaré duality theorem, named after Henri Poincaré, is a basic result on the structure of the homology and cohomology groups of manifolds. It states that if M is an n dimensional compact oriented manifold, then the k th… … Wikipedia