Lagrange's equations (of motion)

Lagrange's equations (of motion)
уравнения (движения) Лагранжа

Англо-русский словарь технических терминов. 2005.

Игры ⚽ Поможем написать реферат

Смотреть что такое "Lagrange's equations (of motion)" в других словарях:

  • Equations of motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Lagrange's equations — noun a set of equations of motion of a mechanical system which relate the kinetic energy of the system to its generalized coordinates …   Wiktionary

  • Lagrange multiplier — Figure 1: Find x and y to maximize f(x,y) subject to a constraint (shown in red) g(x,y) = c …   Wikipedia

  • Lagrange multipliers — In mathematical optimization problems, the method of Lagrange multipliers, named after Joseph Louis Lagrange, is a method for finding the extrema of a function of several variables subject to one or more constraints; it is the basic tool in… …   Wikipedia

  • Joseph Louis Lagrange — Lagrange redirects here. For other uses, see Lagrange (disambiguation). Joseph Louis Lagrange Joseph Louis (Giuseppe Lodovico), comte de Lagrange …   Wikipedia

  • Mechanics of planar particle motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Centrifugal force (planar motion) — In classical mechanics, centrifugal force (from Latin centrum center and fugere to flee ) is one of the three so called inertial forces or fictitious forces that enter the equations of motion when Newton s laws are formulated in a non inertial… …   Wikipedia

  • Circular motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Newton's laws of motion — For other uses, see Laws of motion. Classical mechanics …   Wikipedia

  • Non-uniform circular motion — Classical mechanics Newton s Second Law History of classical mechanics  …   Wikipedia

  • Euler–Lagrange equation — In calculus of variations, the Euler–Lagrange equation, or Lagrange s equation is a differential equation whose solutions are the functions for which a given functional is stationary. It was developed by Swiss mathematician Leonhard Euler and… …   Wikipedia


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»