линейно зависимые векторы

линейно зависимые векторы
linearly dependent vectors

Англо-русский словарь технических терминов. 2005.

Игры ⚽ Нужно сделать НИР?

Смотреть что такое "линейно зависимые векторы" в других словарях:

  • Линейно зависимые и линейно независимые системы векторов — В линейной алгебре линейная зависимость это свойство, которое может иметь подмножество линейного пространства. Для этого должна существовать нетривиальная линейная комбинация элементов этого множества, равная нулевому элементу. Если такой… …   Википедия

  • Линейная независимость — Линейно независимые векторы в R3 …   Википедия

  • Метод квадратичного решета — (Quadratic sieve algorithm, сокр. QS)  метод факторизации больших чисел, разработанный Померанцем в 1981 году. Долгое время превосходил другие методы факторизации целых чисел общего вида, не имеющих простых делителей, порядок которых… …   Википедия

  • Матроид — Матроид  классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое… …   Википедия

  • Графический матроид — Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое определение 2… …   Википедия

  • Ранг матроида — Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое определение 2… …   Википедия

  • Универсальный матроид — Матроид классификация подмножеств некоторого множества, представляющая собой обобщение идеи независимости элементов, аналогично независимости элементов линейного пространства, на произвольное множество. Содержание 1 Аксиоматическое определение 2… …   Википедия


Поделиться ссылкой на выделенное

Прямая ссылка:
Нажмите правой клавишей мыши и выберите «Копировать ссылку»