- vertical subbundle
- мат. вертикальное подрасслоение
Большой англо-русский и русско-английский словарь. 2001.
Большой англо-русский и русско-английский словарь. 2001.
Vertical bundle — In mathematics, the vertical bundle of a smooth fiber bundle is the subbundle of the tangent bundle that consists of all vectors which are tangent to the fibers. More precisely, if pi; : E rarr; M is a smooth fiber bundle over a smooth manifold M … Wikipedia
Ehresmann connection — In differential geometry, an Ehresmann connection (after the French mathematician Charles Ehresmann who first formalized this concept) is a version of the notion of a connection which is defined on arbitrary fibre bundles. In particular, it may… … Wikipedia
Horizontal bundle — In mathematics, in the field of differential topology, given : pi; : E rarr; M , a smooth fiber bundle over a smooth manifold M , then the vertical bundle V E of E is the subbundle of the tangent bundle T E consisting of the vectors which are… … Wikipedia
Cartan connection — In the mathematical field of differential geometry, a Cartan connection is a flexible generalization of the notion of an affine connection. It may also be regarded as a specialization of the general concept of a principal connection, in which the … Wikipedia
Affine connection — An affine connection on the sphere rolls the affine tangent plane from one point to another. As it does so, the point of contact traces out a curve in the plane: the development. In the branch of mathematics called differential geometry, an… … Wikipedia
Vector bundle — The Möbius strip is a line bundle over the 1 sphere S1. Locally around every point in S1, it looks like U × R, but the total bundle is different from S1 × R (which is a cylinder instead). In mathematics, a vector bundle is a… … Wikipedia
Connection (principal bundle) — This article is about connections on principal bundles. See connection (mathematics) for other types of connections in mathematics. In mathematics, a connection is a device that defines a notion of parallel transport on the bundle; that is, a way … Wikipedia
Ambient construction — In conformal geometry, the ambient construction refers to a construction of Charles Fefferman and Robin Graham [Fefferman, C. and Graham, R. Conformal invariants , in Élie Cartan et les Mathématiques d Aujourdui , Asterisque (1985), 95 116.] for… … Wikipedia